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Outline 

  Modelling of lithospheric deformation 
  Techniques  
  Progress 
  Challenges 

  FEM or Finite Differences: what is better? 
  Accuracy, memory usage 
  Effect of element types  

  Two-phase flow formulations coupled to lithospheric 
problems. 
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The Earth is a dynamical system 

Mantle convection 
Van Heck & Tackley (2008) 

Surface processes 

Interaction mantle, lithosphere &  
surface processes. Subduction initiation & lithospheric failure 

Subduction on present day & 
early Earth 

Magma migration &  
emplacement 
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Brittle crustal deformation 

salt 



Equations for mantle & lithosphere deformation 

  Equations well established 
  Typically need to be solved numerically 
  Often reduced to variable viscosity Stokes problem 
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2D Lithospheric deformation: FEM - MILAMIN_VEP 
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  Uses MILAMIN technology (Dabrowski et al. 2008) to speed 
up matrix assembly phase. 

  Visco-elasto-plastic rheology. 
  Unstructured OR structured finite elements. 
  Q1P0, Q2P-1, T2P-1. 
  Free surface. 
  Thermo-mechanical coupling. 
  Tracer-based or contour-based material properties 
  Lagrangian with remeshing for large deformations 
  Phase transitions. 
  Set of MATLAB functions. 
  Different setups have different needs -> easy to  

 ‘build’ your own code using existing functions. 
  Routinely being used by various people over the last few 

years. 

  Disadvantages:  2D only, serial, uses direct solvers. 



  Makes the system of equations slightly compressible 
  Iterations are performed until   
  Must be used in combination with a direct solver. 
  Can deal with large viscosity contrasts O(107).   

MILAMIN_VEP solver 
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Subduction initiation – Marcel Thielmann 
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MILAMIN_VEP 



2D modelling of fold and thrust belts – Jonas Ruh 
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Makran (Iran) 

Jura 

Zagros (Iran) 

MILAMIN_VEP 



  Easy for teaching. 
  Various formulations: 

  Primitive variable staggered grid Velocity-
Pressure formulation (Gerya, Tackley) 

  Streamfunction approach (Schmeling). 
  Rotated finite difference stencil. 

  Which one is better? 
  Doesn’t really matter.  

  Interpolation of properties is more important 
(Deubelbeiss & Kaus, 2008) 

  Staggered grid is the easiest to implement. 

  Optimal interpolation scheme: 
  Duretz, May, Gerya & Tackley (G3, 2011) 

  Sticky air layer approximates free surface 
  Crameri et al. (submitted) 

2D Lithospheric Deformation: Finite difference methods 
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  Rheological/mechanical complexities (multiphase 
flow, melt migration etc.) 

  3D!! 
 Stokes solver should be: 
 Robust 
 Fast 
 Use little memory 

What are the challenges? 
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Direct vs. iterative solvers – 2D 

  2D: direct solvers are quite fast and robust. 
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Direct vs. iterative solvers – 3D 

  3D: multigrid is the only option for large resolutions. 
  But: multigrid convergence deteriorates in presence of viscosity jumps.  
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 Finite Element Models 

Some 3D lithospheric deformation codes: 
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Fantom – C.Thieulot 

Direct solver, Q1P0 elements 

SLIM3D – A.Popov 

Direct solver – Q1P0 

Underworld – L.Moresi & co 

iterative solvers/ Q1P0–Q1Q1–[Q2Pm1] 

Douar – J. Braun 

Direct solver – Q1P0 

GALE– W.Laundry & CIG 

Iterative solvers – Q1Q1 

I3VIS– T. Gerya 

Iterative (multigrid) 

Finite Difference 



FEM – LaMEM (Lithosphere and Mantle Evolution Model) 

  3D only, written in C, uses PETSc (fully MPI parallel). 
  Main idea: we don’t really know which iterative/multigrid  

solvers work well for 3D geodynamics problems. 
  Use either a finite element OR a finite difference 

discretization. 
  Particles to trace material properties. 
  Most options (solvers etc.) configurable from command-

line. 
  Change element-type from the command-line.  

  ./LaMEM –vpt_element Q1P0/Q2Pm1_global/Q1Q1/FDSTAG 
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LaMEM – elements & discretization 

Finite Element Method (FEM) 

  Only LBB stable ones are very reliable.  
  Viscosity should be constant or smoothly 

varying within an element 

Finite Difference Method 

  Staggered grid. 
  Viscosity defined at two locations. 
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Not LBB stable 

Stabilized but not  

fully incompressible 

LBB stable 



LaMEM – solver strategies 
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(2) Fully coupled 

(1) Schur complement reduction 

(3) Powell-Hesteness iterations (penalty method)  



LaMEM & multigrid – FC solver 
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‘fieldsplit’ 

Solve with iterative method 
(GMRES or CG) with an Algebraic 
or Geometric Multigrid method as 
preconditioner.  

2. Solve       iteratively (e.g. using FGMRES)  

with as preconditioner:  

Ku



Thin sheet vs. 3D models – Sarah Lechmann 

18 Geophysical Fluid Dynamics - ETH Zurich - www.gfd.ethz.ch 

LaMEM Lechmann, May, Kaus & Schmalholz (in press), GJI.  



3D modelling of detachment folding – Naiara Fernandez 
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Using LaMEM & 1024 cores of Cray XT5 (Swiss Supercomputer center) 

27x513x513 nodes 



FEM vs. FDM  

  RHEA 
  FEM method, Q1Q1stab 
  Adaptive Mesh Refinement (AMR) 
  1.2 billion DOF’s on ~8000 processors 
  ~150’000 DOF/processor 
  1 timestep: ~9 hours CPU time 

  I3VIS 
  Staggered grid FDM. 
  Uniform mesh 
  197x197x96 nodes; ~15x106 DOF’s on 1 

processor 
  ~15 million DOF/processor 
  1 timestep:~5 hours CPU time (1th) 

   2-3 minutes (subsequent) 
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FEM or Finite Difference? 

  (1) Accuracy 

  (2) Memory usage 

  (3) Speed 

  (4) How well do they work with iterative solvers? 
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FEM vs. Finite difference - accuracy benchmark 
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Isoviscous 

High-order element wins for velocity 
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Viscosity contrast 1000, element 
boundary aligned with jump 

FEM vs. Finite difference - accuracy benchmark 

High-order element wins. 



FEM vs. Finite difference - accuracy benchmark 
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Viscosity contrast 1000, element 
boundary NOT aligned with jump 

FDSTAG not so bad 

High-order element sucks. 



FEM vs. FDSTAG – memory usage 
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Q2Pm1 FDSTAG 

FDSTAG requires significantly less memory! 

Matrix-vector multiplications much faster! 



FEM vs. FDSTAG – iterative performance 
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Not LBB stable LBB stable Stabilized 

Non-stable elements are bad for iterative solvers 

FDSTAG behaves like a stable element. 



FEM vs. FDSTAG – subduction setup 
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FEM vs. FDSTAG – subduction setup 
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Summary part 1 

  Modelling high-resolution 3D lithospheric deformation is 
challenging. 

  Need to use iterative solvers. 
  Better use a stable element. 
  The staggered grid finite difference method behaves like an 

ideal (small) stable finite element 
  Small 
  Cheap  
  Equally accurate as other linear elements 
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Geological cartoon of magmatic systems 

Source region 

Melt percolation 

Differentiation & 
interaction with crust 

Batholith 

Volcano 



Challenges: 
  Two phase flow  formulation required. 
  Dikes, melt channels or diapirs? 

  Requires elasto-plastic formulation. 

  Magmatic evolution and emplacement of batholiths 
  Take (2D) lithospheric deformation into account . 



Modeling of two-phase flow – Tobias Keller 

  Overcoming limitations 
  Possible to treat regions of magma accumulation as Stokes flow at 

lower cutoff viscosity? 
  Lithosphere deforms as visco-elasto-plastic medium,  

-> use full visco-elasto-plastic compaction rheology 

  Overcoming challenges 
  Use implementation style of standard Stokes codes 
  Use primitive variables without flow decomposition 

  > Code in progress: FEM2PHAST 
       (Finite Element Model of 2-PHase and STokes flow) 



Two-phase flow equations 

  Bulk momentum conservation 

  Solid mass conservation 

  Bulk mass conservation 

  Porosity conservation 

  Energy Conservation 
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⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− M ⋅

Δρ
ρsρ f

= 0

 

Dsφ
Dt

+ 1−φ( )∇ ⋅v s −
M
ρs

= 0

v s

Pf

Pe

φ

T
 

φρ fC f

DfT
Dt

+ 1−φ( )ρsCs
DsT
Dt

= −∇ ⋅ kb∇T[ ] + Hr + L ⋅ M + 1−φ( ) ⋅ σ s
d ε s,vp

d +ηs,vp
v ∇ ⋅v s[ ]vp

2( ) + η f

kφ
qD

2

                                                      



Compaction rheology 

  Effective mean stress / volumetric strain rate 

  Maxwell visco-elasto-plastic rheology (sum strain rates) 

  Visco-elasto-plasticity (effective viscosity approach) 
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First results in progress 

  Simple setup to test rheological regimes 
  Kinematic boundaries: extension 2.e-15 s-1 
  10% melt region in 0.1% background material 
  Inhomogeneity at tip of melt region 
  Hydrostatic fluid pressure lower boundary 
  Porosity-weakening of viscosities 

  > Gradually increase background viscosity  
       from 1.e19 to 1.e24 Pa.s 

ηs
d = ηs

ref ⋅ exp −25 ⋅φ( )      ηs
v =

ηs
ref

φ



eta_ref = 1.e19 Pa.s 



eta_ref = 1.e21 Pa.s 



eta_ref = 1.e23 Pa.s 



Three (preliminary) regimes 

diapirs channels dikes 
porosity weakening decompaction weakening mode-1 plasticity 



Magmatic evolution model 

  Melting model 
  Katz (2003) plus some additions 
 Melt fraction depends on P, T, H2O and composition 

  Magmatic evolution of melt and solid 
 Melt evolution index: 0% (primordial) to 100% (evolved) 
  Solid evolution index: 0% (ultramafic) to 100% (felsic) 

  > compute melting rate / solve energy equation during 
each iteration of non-linear solver 



First results… 

extensional 

boundaries 

initiate melting 

by 250 K excess 

temperature 

continental crust 

and lithosphere 



Conclusions   

  Code development was/is and remains important 
in geodynamics.  

  3D is challenging particularly for lithospheric 
dynamics. 

  The staggered finite difference method is 
(surprisingly) competitive. 

  Magmatic systems require including two-phase 
flow formulations within lithospheric codes.  

  Preliminary results produce diapirs, dikes and 
channelized flow. 

42 Geophysical Fluid Dynamics - ETH Zurich - www.gfd.ethz.ch 



Geophysical Fluid Dynamics - ETH Zurich - www.gfd.ethz.ch 

& stay tuned… 

Additional slides 



FEM vs. Finite Differences – Model setup 

  Folding setup, viscosity contrast 100. 
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Staggered grid FDM 

MILAMIN unstructured FEM code [T2P-1] 



FEM vs. Finite Differences 
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FDSTAG is doing pretty well. 


