Übungsaufgaben zur Vorlesung "Mathematik I für Geoökologen und Geowissenschaftler"

#5

Letzter Abgabetermin: 04. 12. 2009

1. C[a,b] sei die Menge der im Intervall stetigen Funktionen. In dieser Menge wird eine Addition + und eine reelle Vervielfachung · für Funktionen $f,g \in C[a,b]$ und $\lambda \in \mathbb{R}$ erklärt:

$$+: C[a,b] \times C[a,b] \to C[a,b]$$
 vermöge $(f+g)(t) = f(t) + g(t)$ für $t \in [a,b]$, $: \mathbb{R} \times C[a,b] \to C[a,b]$ vermöge $(\lambda \cdot f)(t) = \lambda f(t)$ für $t \in [a,b]$.

 $V = (C[a,b], \mathbb{R}, +, \cdot)$ ist ein Vektorraum.

Die Menge $C^1[a,b]$ der (mindestens) einmal differenzierbaren Funktionen ist eine Teilmenge von C[a,b]. Zeigen Sie:

- a) $C^1[a,b]$ ist eine echte Teilmenge von C[a,b], d.h. $C^1[a,b] \subset C[a,b]$!
- b) $U = (C^1[a,b], \mathbb{R}; \oplus, \odot)$ ist ein Untervektorraum von V! (\oplus und \odot sind die Einschränkungen der oben erklärten Addition und Vervielfachung auf die Menge der differenzierbaren Funktionen $C^1[a,b]$.)

(6 Punkte)

2. Untersuchen Sie die gegebenen Vektoren u,v im \mathbb{K} -Vektorraum V auf lineare Unabhängigkeit!

a)
$$V = \mathbb{C}^2$$
, $\mathbb{K} = \mathbb{C}$, $u = \begin{pmatrix} 1+i\\2i \end{pmatrix}$, $v = \begin{pmatrix} 1\\1+i \end{pmatrix}$,

a)
$$V = \mathbb{C}^2$$
, $\mathbb{K} = \mathbb{C}$, $u = \begin{pmatrix} 1+i \\ 2i \end{pmatrix}, v = \begin{pmatrix} 1 \\ 1+i \end{pmatrix}$,
b) $V = \mathbb{C}^2$, $\mathbb{K} = \mathbb{R}$, $u = \begin{pmatrix} 1+i \\ 2i \end{pmatrix}, v = \begin{pmatrix} 1 \\ 1+i \end{pmatrix}$.

(4 Punkte)

3. Bildet das System der drei Vektoren $v_1 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$ ein Erzeugendensystem des \mathbb{R}^3 ? Begründung!

(3 Punkte)

4. Betrachtet werde der Vektorraum ($\mathbb{R}^{2\times 2}$, \mathbb{R} , +, ·). Zeigen Sie: Die vier Matrizen

$$A = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}, B = \begin{pmatrix} -1 & 1 \\ 2 & -3 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, D = \begin{pmatrix} 4 & 3 \\ 0 & 2 \end{pmatrix}$$

sind linear unabhängig!

(3 Punkte)