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Ellipsoid-Geoid: definition

The international reference
ellipsoid is a close approximation
to the equipotential surface of
gravity, but it is really a
mathematical convenience. The
physical equipotential surface of
gravity is called the geoid. It
reflects the true distribution of
mass inside the Earth and differs
from the theoretical ellipsoid by
small amounts. Far from land the
geoid agrees with the free ocean
surface, excluding the temporary
perturbing effects of tides and
winds. Over the continents the
geoid is affected by the mass of
land above mean sea level.

/ Earth's surface
A Continents

Ocean

Geoide

Ellipsoide

In computing the theoretical figure of the Earth the distribution of mass beneath
the ellipsoid is assumed to be homogeneous. A local excess of mass under the
ellipsoid will deflect and strengthen gravity locally. The potential of the ellipsoid
is achieved further from the center of the Earth. The equipotential surface is
forced to warp upward while remaining normal to gravity. This gives a positive
geoid undulation over a mass excess under the ellipsoid. Conversely, a mass
deficit beneath the ellipsoid will deflect the geoid below the ellipsoid, causing a
negative geoid undulation. As a result of the uneven topography and
heterogeneous internal mass distribution of the Earth, the geoid is a bumpy

equipotential surface.
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The mass within the ellipsoid causes a downward gravitational
B attraction toward the center of the Earth, but a hill or mountain whose
Sl center of gravity is outside the ellipsoid causes an upward attraction.
§ This causes a local elevation of the geoid above the ellipsoid. The
M displacement between the geoid and the ellipsoid is called a geoid
S8 undulation; the elevation caused by the mass above the ellipsoid is a
3 positive undulation.
RS
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Geoid

Geoid due to the mass
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The mass within the ellipsoid causes a downward gravitational
attraction toward the center of the Earth, but a hill or mountain whose
center of gravity is outside the ellipsoid causes an upward attraction.
This causes a local elevation of the geoid above the ellipsoid. The
displacement between the geoid and the ellipsoid is called a geoid
undulation; the elevation caused by the mass above the ellipsoid is a
positive undulation.
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The mass within the ellipsoid causes a downward gravitational
attraction toward the center of the Earth, but a hill or mountain whose
center of gravity is outside the ellipsoid causes an upward attraction.
This causes a local elevation of the geoid above the ellipsoid. The
displacement between the geoid and the ellipsoid is called a geoid
undulation; the elevation caused by the mass above the ellipsoid is a
positive undulation.
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Geoid

Geoid due to the mass
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The topo plunges...

...The gravity decreases ...
The geoid goes down

The mass within the ellipsoid causes a downward gravitational
attraction toward the center of the Earth, but a hill or mountain whose
center of gravity is outside the ellipsoid causes an upward attraction.
This causes a local elevation of the geoid above the ellipsoid. The
displacement between the geoid and the ellipsoid is called a geoid

undulation; the elevation caused by the mass above the ellipsoid is a
positive undulation.
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Geoid

Total geoid

(mass + topo) Geoid due to the mass
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The topo plunges...

...The gravity decreases ...
The geoid goes down

The mass within the ellipsoid causes a downward gravitational
attraction toward the center of the Earth, but a hill or mountain whose
center of gravity is outside the ellipsoid causes an upward attraction.
This causes a local elevation of the geoid above the ellipsoid. The
displacement between the geoid and the ellipsoid is called a geoid
undulation; the elevation caused by the mass above the ellipsoid is a
positive undulation.
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Geoid: examples
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§ Earth’s geoide from GRACE (Gravity Recovery And Climate Experiment)
N satellite (NASA-GFZ)

Tuesday, November 10, 2009



Geoid: examples

%

=

3

=

3

‘g; -120m  -100 -80 -60 -40 -20 0 20 +40 +60 +80m

§ Earth’s geoide from GRACE (Gravity Recovery And Climate Experiment)
~ satellite (NASA-GF7Z)

Tuesday, November 10, 2009



Geoid: examples

Non-hydrostatic Geoid GEM-T1
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Non-hydrostatic Geoid GEM-T1
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Measurement of the Geoid : spatial geodesy
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Measurement of the Geoid

: spatial geodesy
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A satellite orbiting around the
Earth will be sensitive to gravity:
Its motion is such that the
rotation force exactly equilibrates
the gravity forces.
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: spatial geodesy
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A satellite orbiting around the
Earth will be sensitive to gravity:
Its motion is such that the
rotation force exactly equilibrates
the gravity forces.

If the gravity is stronger (i.e. the
gravity potential higher), then the
satellite will have to orbit a little
bit farther away from the earth
(to increase the rotation force,
and remain in equilibrium)
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A satellite orbiting around the
Earth will be sensitive to gravity:
Its motion is such that the
rotation force exactly equilibrates
the gravity forces.

If the gravity is stronger (i.e. the
gravity potential higher), then the
satellite will have to orbit a little
bit farther away from the earth
(to increase the rotation force,
and remain in equilibrium)

Conclusion : an orbiting satellite
will follow exactly the Gravity
potential !
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: spatial geodesy
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A satellite orbiting around the
Earth will be sensitive to gravity:
Its motion is such that the
rotation force exactly equilibrates
the gravity forces.

If the gravity is stronger (i.e. the
gravity potential higher), then the
satellite will have to orbit a little
bit farther away from the earth
(to increase the rotation force,
and remain in equilibrium)

Conclusion : an orbiting satellite
will follow exactly the Gravity
potential !
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Altitude (height) 1s not a purely geometrical concept (i.e. distance
from one point to the other) it is defined with respect to the gravity
potential.
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Altitude: definition

Altitude (height) 1s not a purely geometrical concept (i.e. distance
from one point to the other) it is defined with respect to the gravity
potential.

2 points A and B at
A B ground level
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Altitude: definition

Altitude (height) 1s not a purely geometrical concept (i.e. distance
from one point to the other) it is defined with respect to the gravity
potential.

2 points A and B at
ground level
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One might think their

altitude is dA and dp
But it is not !!!!

= distance to
Earth center

dA
dB = distance to
Earth center
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Altitude: definition

Altitude (height) 1s not a purely geometrical concept (i.e. distance
from one point to the other) it is defined with respect to the gravity
potential.

2 points A and B at
A B ground level
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One might think their

altitude is dA and dp
But it is not !!!!

= distance to
Earth center

dA
dB = distance to
Earth center
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Altitude: definition

Altitude (height) 1s not a purely geometrical concept (i.e. distance
from one point to the other) it is defined with respect to the gravity

potential.
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2 points A and B at
ground level

One might think their
altitude is dA and dp
But it is not !!!!

The altitude is the
distance to the geoid

(i.e. the sea level) : ha
and hp
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Altitude: definition

potential.
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Altitude (height) 1s not a purely geometrical concept (i.e. distance
from one point to the other) it is defined with respect to the gravity

2 points A and B at
ground level

One might think their
altitude is dA and dp
But it is not !!!!

The altitude is the
distance to the geoid

(i.e. the sea level) : ha
and hp

If the Geoid is not flat (i.e.
at the same distance from
the center of the Earth at
A and B), then the
altitude changes
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Satellite altimetry : principle
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Satellite altimetry : principle
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i 2% A satellite radar measures
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Satellite altimetry
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Satellite altimetry

The result is a high resolution map of the Geoid on 70% of the earth surface
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Satellite altimetry
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The result is a high resolution map of the Geoid on 70% of the

earth surface
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Satellite altimetry
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Satellite altimetry
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25

A zoom of the oceanic
Geoid shows that we see
in detail short
wavelength gravity
anomalies

These come from density
anomalies at the surface
of the sea bottom. They
are ridges, sea mounts,
transform faults, etc...

QPS8 DR antennaa
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|

' GULF
| STREAM

An anomaly of the sea surface
can also be related to water
anomaly

The precision of current
altimeter allow to map swells
of no more than 10 cm.

Doing this, we can trace
oceanic currents like the Gulf

Stream
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Satellite altimetry
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Satellite altimetry

Sea level variation
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Geodasie
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Andes

Compensating
mass
deficiency

Figure 2.27 Horizontal gravitational attraction of
the mass of the Andes above sea level would cause the
deflection (c) of a plumb bob from the vertical (a).

The observed deflection (b) is smaller, indicating the
presence of a compensating mass deficiency beneath
the Andes (angles of deflection and mass distribution
are schematic only).

Der Begriff der Isostasie

Georg Everest
1790-1866

Tuesday, November 10, 2009




[sostasy: models

- Module BP 11

R. Bousquet 2009-2010

(a) Airy

(b) Pratt

mountain

sea-level

d __ocean

(c) Vening Meinesz

mountain

sea-level

|
crust I
|

K regional

compensation

compensation

Tuesday, November 10, 2009




Isostasy: corrections

E If the interior of the Earth were uniform, the value of gravity on the
9 international reference ellipsoid would vary with latitude according to the
E normal gravity formula
S  (a) hill o hill The theoretical value of
ch gravity is computed at the
- ! valley _ points R on the reference
= Ihp Q ellipsoid below P and Q. Thus,
- o we must correct the measured
R reference ellipsoid R graVity before it can be
(b) Q compared with the reference
P N\ value.
"o
BOUGUER-Plate hP BOUGUER-Plate
ﬁ reference ellipsoid ﬁ
Q
(c) 2
P
I "o
= ¥
8. R reference ellipsoid R
S
N
§ (d)
3 R Q
S R reference ellipsoid R
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Isostasy: corrections
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AQ
V :
E added to the measured gravity.
S  (a) hill o il
o
- P valley
valley . hQ
P
ﬁ reference ellipsoid ﬁ
(b) 9
P N\
h hQ
BOUGUER-Plate P BOUGUER-Plate
ﬁ reference ellipsoid ﬁ
Q
(c) 2
P
h
= ¥
X R reference ellipsoid R
2
S
N
: S
3
< X Q
S R reference ellipsoid R

The measured gravity is reduced by the presence of the hill-top; to
compensate for this a terrain (or topographic) correction is calculated and

The presence of a valley next
to each measurement station
also requires a terrain
correction.

The downward attraction on
the gravimeter would be
increased, so the terrain
correction for a valley must
also be added to the

measured gravity, just as for
a hill.

These corrections effectively
level the topography to the
same elevation as the gravity
station.
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Isostasy: corrections
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After leveling the topography there is now a fictive uniform layer of rock
with density p between the gravity station and the reference ellipsoid

The gravitational acceleration
of this mass is included in the
measured gravity and must be
removed before we can
compare with the theoretical
gravity. The layer is taken to
be a plate of thickness hp or
hqo under each station; it is
called the Bouguer plate.

Its gravitational acceleration
can be computed for known
thickness and density r, and
gives a Bouguer correction
that must be subtracted from
the measured gravity, if the
gravity station is above sea-
level.

Its size depends on the
density of the local rocks, but
typically amounts to about
0.1 mgal m™.
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Isostasy: corrections
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A, : : : .
" hQ of the gravity station above the ellipsoid
E
3
E (a) Q hill
o
- P valley
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Finally, we must compensate the measured gravity for the elevation hP or

The gravitational attraction,
decreases proportionately to
the inverse square of distance
from the center of the Earth.
The gravity measured at P or
Q is smaller than it would be
if measured on the ellipsoid
at R. A free-air correction for
the elevation of the station
must be added to the
measured gravity. This
correction ignores the effects
of material between the
measurement and reference
levels.

The free-air correction 1is
positive if the station is above
sea-level but negative if it is
below sea-level. It amounts to
about 0.3 mgal m!.
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— 1
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0 2(|)0 km
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Free-air and Bouguer anomalies across a mountain range. In (a) the
mountain is modelled by a fully supported block, and in (b) the mass of
the mountain above sea-level (SL) is compensated by a less-dense crustal
root, which projects down into the denser mantle (based on Bott, 1982)
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Isostasy: examples

Bouguer anomaly
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Hypothetical
Bouguer anomalies
over continental
and oceanic areas.
The regional
Bouguer anomaly
varies roughly
inversely with
crustal thickness
and topographic
elevation (after
Robinson and Coruh,

1988)
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Isostasy:

examples
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The Central Alps

(a) Bouguer gravity anomaly
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Seismology
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Surface
waves

] Seismic station

Earthquake
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Seismology

We can study the interior structure of the Earth by studying how
seismic waves travel through Earth...

Seismic waves propagate through Earth in two modes:
P wave: Primary (Pressure, or Pushing) wave
P wave can travel through any material.
S wave: Secondary (Shear, or side-to-side) wave.
S wave cannot travel through liquid.
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Liquid outer core stops
— —— S waves, bends P waves.
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”
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S waves
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Seismograms

The time difference
between P and S increases
with the distance to the
epicenter. This time
difference allow to
determine the distance to
the epicenter

20

Time (mn)

10
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30 50 70
Distance to the epicenter A°

90
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30°N -

0°4

30°5+

60°S - . I - I I
180° 120° 60° W 0° E 60° 120° 180°

Location of an earthquake epicenter using epicentral distances of
three seismic stations (at A, B and C). The epicentral distance of each
station defines the radius of a circle centered on the station. The
epicenter (triangle) is located at the common intersection of the
circles; their oval appearance is due to the map projection
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Travel-time versus epicentral distance (t-A)
curves for some important seismic phases
(modified from Jeffreys and Bullen, 1940)
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Examples of seismic waves
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SKS

—>> P-wave
—>»— S-wave
Seismic wave paths of some important refracted and reflected P-

wave and S-wave phases from an earthquake with focus at the
Earth’s surface.
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