Mantle Temperatures and
Thermodynamic Properties

4.1 Heat Conduction and the Age of the Earth

4.1.1 Cooling of an Isothermal Earth

Determinations of the temperature distribution within the Earth have long been a major
focus of the physical sciences. Early in the nineteenth century it was recognized from
temperature measurements in mines, that the temperature T increased with depth y at a
rate dT/dy = 20-30Kkm™!, the geothermal gradient. At that time, the heat flow at the
Earth’s surface implied by the geothermal gradient was attributed to the secular cooling of
the planet, an inference that, as it turns out, was partially correct.

William Thompson (later Lord Kelvin) (Figure 4.1) used this assumption as the basis for
his estimate of the age of the Earth (Burchfield, 1975). Thompson assumed that the Earth
was conductively cooling from a hot initial state. He applied solutions for the cooling of a

Figure 4.1. Photograph of William Thompson (Lord
Kelvin).
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semi-infinite half-space to determine the time required to establish the present geothermal

gradient. The distribution of temperature 7" at shallow depths can be modeled as one-

dimensional, time-dependent heat conduction in the absence of heat sources (see Chapter 6):

oT 82T

pe B =% 5y (4.1.1)

In this heat conduction equation, p is the density, ¢ is the specific heat, k is the thermal

conductivity, y is the depth, and 7 is time. We consider a semi-infinite half-space defined by

y > 0 which is initially at a temperature 7. At ¢ = 0, the surface y = 0 is instantaneously
subjected to the temperature 7y and the surface temperature 1s held at Tp for r > 0.

The solution to this problem, which serves as the basic thermal model of the oceanic
lithosphere, is best obtained by introducing the nondimensional similarity variables

T, —T
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T — Ty
2 (k)12

4.1.2)

n (4.1.3)
where ¥k = k/pc is the thermal diffusivity. The solutions at different times are “similar”
to each other in the sense that the spatial dependence at one time can be obtained from the
spatial dependence at a different time by stretching the coordinate y by the square root of
the ratio of the times.

Derivatives with respect to the variables 7 and y transform to derivatives with respect to
the variable n using the chain rule as follows:
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Substitution of (4.1.2) to (4.1.6) into (4.1.1) gives
1d°0
_,,Z_i =55 “.1.7)
with the boundary conditions
gd=1 &t f'=0 (4.1.8)
=0 as n— o0 (4.1.9)

The introduction of the similarity variable reduces the partial differential equation (4.1.1)
to an ordinary differential equation (4.1.7) in the variable 7. This is appropriate as long as
the similarity solution satisfies the required boundary conditions expressed as (4.1.8) and
(4.1.9) in terms of the similarity variables.
Equation (4.1.7) can be integrated by letting
do

= — (4.1.10)
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Upon rewriting (4.1.7) we obtain

ld
—ndn = rZ—g;b

Integration is straightforward with the result
2
—n“=In¢ —Incy
where — In ¢; is the constant of integration. It follows that
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Upon integration we obtain
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(4.1.11)
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(4.1.14)

where 7 is a dummy variable of integration and the condition 6(0) = 1 was used to evaluate

the second constant of integration. Since #(c0) = 0, we must have
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The definite integral is
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Thus the constant c; = —2/4/7 and
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The definite integral is the definition of the error function

2 n

2
erf(n) = — e dn
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Thus we can rewrite 0 as

0 =1 —erf(n) = erfc(n)

(4.1.15)

(4.1.16)

(4.1.17)

(4.1.18)

(4.1.19)

where erfc(n) is the complementary error function. Values of the error function and the
complementary error function are listed in Table 4.1; the functions are also shown in

Figure 4.2.

The solution for the temperature as a function of time ¢ and depth y is (4.1.19). It can be

written in terms of the original variables as

T] - T ¢ ( y )
= erfc
T — 1y 2ntKt

(4.1.20)
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Table 4.1. The Error Function and the
Complementary Error Function

n erf n erfcy

0 0 1.0

0.02 0.022565 0.977435
0.04 0.045111 0.954889
0.06 0.067622 0.932378
0.08 0.090078 0.909922
0.10 0.112463 0.887537
0.15 0.167996 0.832004
0.20 0.222703 0.777297
0.25 0.276326 0.723674
0.30 0.328627 0.671373
0.35 0.379382 0.620618
0.40 0.428392 0.571608
0.45 0.475482 0.524518
0.50 0.520500 0.479500
0.55 0.563323 0.436677
0.60 0.603856 0.396144
0.65 0.642029 0.357971
0.70 0.677801 0.322199
0.75 0.711156 0.288844
0.80 0.742101 0.257899
0.85 0.770668 0.229332
0.90 0.796908 0.203092
0.95 0.820891 0.179109
1.0 0.842701 0.157299
1. 0.880205 0.119795
1.2 0.910314 0.089686
1.3 0.934008 0.065992
1.4 0.952285 0.047715
1.5 0.966105 0.033895
1.6 0.976348 0.023652
1.7 0.983790 0.016210
1.8 0.989091 0.010909
1.9 0.992790 0.007210
2.0 0.995322 0.004678
2.2 0.998137 0.001863
2.4 0.999311 0.000689
2.6 0.999764 0.000236
2.8 0.999925 0.000075
3.0 0.999978 0.000022

At y = 0, the complementary error functionis 1 and T = Tp. As y — oo or ¢t = 0, erfc
is 0 and 7" = Tj. The general solution for 6 or (Ty — T)/(T; — Tp) is shown as erfc () in
Figure 4.2.

Regions in the Earth in which heat diffusion is an important heat transfer mechanism
are usually referred to as thermal boundary layers. In this case the thickness of the thermal
boundary layer requires an arbitrary definition, since the temperature 7" approaches the initial
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temperature 7} asymptotically. We define the thickness of the boundary layer yr as the value
of y where & = 0.1. This thickness increases with time as the half-space cools. However,
the condition & = 0.1 defines a unique value of the similarity variable n7. From (4.1.19)
and Table 4.1 we obtain

nr = erfec™1(0.1) = 1.16 (4.1.21)
and from (4.1.3) we get
yr = 2np/it = 2.32/kt (4.1.22)

The thickness of the thermal boundary layer is 2.32 times the characteristic thermal diffusion
distance /K.

The heat flux go at the surface y = 0 is given by differentiating (4.1.20) according to
Fourier’s law of heat conduction and evaluating the result at y = 0:

(BT) k(T —Tp) d feinh
= e = —— — eIl 7 it
e 9y /y=0 2kt dn b

- kU — To) (4.1.23)

NITKE

Equation (4.1.23) shows that the surface heat flux is proportional to the product of conduc-
tivity k and the temperature difference (7} — Tp) and inversely proportional to the thermal
boundary layer thickness. With the standard definition ¢ = —k (37/dy), the upward heat
loss would be negative. Since the Earth’s surface heat flow is always taken to be a positive
quantity, the minus sign is not included in (4.1.23).

On the basis of (4.1.23), Thompson proposed that the age of the Earth #y is given by

(17 — Tp)?

S Al 9 4.1.24
mi (8T /3y)g ( )

Ip =

where (8T /9y)q is the present geothermal gradient. With (37 /dy)o = 25 Kkm™!, 71 —Tp =
2.000K, and ¥k = 1 mm? s !, the age of the Earth from (4.1.24) is #p = 65 Myr. Thompson
arrived at this age using the geothermal gradient measured in mines. The values of the
temperature difference and the thermal diffusivity used were also reasonable. Based on the
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laws of physics known at that time, the mid-nineteenth century, the age given by Thompson
was reasonable. We now recognize, however, that the continental crust has a near-steady-
state heat balance due to the heat generated by the heat-producing isotopes within the crust
and the mantle heat flux from below. Ironically, had Thompson known to apply the model
to the oceanic lithosphere, he would have obtained very nearly its correct mean age.

4.1.2 Cooling of a Molten Earth

Thompson later modified the conductive cooling model of the Earth to include the hypothesis
that its interior was initially molten. The existence of many surface volcanoes suggested
to him that the Earth was cooling from an initially molten state. In order to model the
solidification problem he considered the instantaneous cooling of a semi-infinite fluid half-
space initially at the solidification temperature. The solution to this problem had been given
by Stefan (1891).

The solidification problem is illustrated in Figure 4.3. The melt has solidified to the depth
y = yu(2). We assume that there is molten material of uniform temperature 7,, everywhere
below the growing solid surface layer. The fact that the molten region does not extend
infinitely far below the surface is of no consequence for the solution. We solve the heat
conduction equation (4.1.1) in the interval 0 < y < y,,(#) subject to the conditions 7" = Ty
aty=0,T =Ty, at y = yy(t), and y,, = 0 at t = 0. The position of the solidification
boundary is a priori an unknown function of time. As in the case of the sudden cooling of
a semi-infinite half-space, there is no length scale in this problem. For this reason, we once
again introduce the dimensionless coordinate n = y/2+/kt asin (4.1.3); it is also convenient
to introduce the dimensionless temperature 6 = (1 — Ty)/(T,, — To) similar to (4.1.2).

The dimensionless coordinate n is obtained by scaling the depth with the thermal diffusion
length +/kt since there is no other length scale in the problem. Similarly, the depth of the
solidification interface y,, must also scale with the thermal diffusion length in such a way
that y,, /+/k is a constant. In other words, the depth of the solidification boundary increases
with time proportionately with the square root of time. We have used dimensional arguments
to determine the functional form of the dependence of y,, on ¢, a nontrivial result. Since
n = y/2+/«t and y,, is proportional to +/kt, the solidification boundary corresponds to
a constant value 7, = yn/ 2./kt of the similarity coordinate n. We denote this constant
value by n,, = A. Thus we have

Y = 2xKkt (4.1.25)
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With our definitions of 0 and n it is clear that the heat conduction equation for 6(n) is
identical with (4.1.7), whose solution we already know to be proportional to erf(n). This
form of solution automatically satisfies the condition 8 = 0(T = Tp) on n = 0(y = 0). To
satisfy the remaining condition that 8 = 1(T = Ty,) at n = nu(y = ym) = A, we need
simply choose the constant of proportionality appropriately. The solution is

. erf ()
~erf())

(4.1.26)

which gives the temperature in the solidified layer 0 < y < y,,. Inthe moltenregion y > yu,
T =T1,.

The constant A is determined by requiring that the latent heat liberated at the solidification
boundary be conducted vertically upward, away from the interface. In time §1, the interface
moves downward a distance (dy,,/dt)8t. In so doing, a mass per unit area p(dy,,/dt)dt
is solidified, thus releasing an amount of latent heat pL (dy,,/dt)dt per unit area (L is the
latent heat liberated upon solidification per unit mass). Conservation of energy requires that
this heat release be conducted away from the boundary at precisely the rate at which it
is liberated. The heat cannot be conducted downward because the magma 1s at a constant
temperature. Fourier’s law of heat conduction gives the rate of upward heat conduction per
unit time and per unit area at y = y,, as k(97 /dy)y—y, . Multiplication of this by é¢ and
equating it to pL(dy,, /dt)dt gives the equation for finding A:

d T
Al (‘— 4.1.27)
dt ay —

From (4.1.25) the speed of the solidification boundary is
dym _ AJk

= 4.1.28
=t (4.1.28)
and the temperature gradient at y = yj, 1S
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Substitution of (4.1.28) and (4.1.29) into (4.1.27) gives
L -~
/% £ (4.1.30)

c(Tn—To) X erf(r)

a transcendental equation for determining A. Given a numerical value of the left side of
(4.1.30), A can be found by iteratively calculating the right side of the equation until agree-
ment is found. Alternatively, the right side of (4.1.30) can be plotted as a function of A, as
in Figure 4.4, and the solution for a particular value of the left side of the equation can be
found graphically.

On the basis of the solution to the solidification problem, the age of the Earth is given by

" (T — To)”
K (3T /0y)E erf? (A)

f (4.1.31)
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10

Figure 4.4. The right side of the transcen-
dental equation (4.1.30) for determining the 4
growth of a solid layer at the surface of a
solidifying magma as a function of A.

By comparing (4.1.31) and (4.1.24) we see that solidification increases the estimate of the
age of the Earth by the factor 1/ erf2(1). For L = 400kJkg™!, ¢ = 1kJkg~' K™', and
Tn — To = 2,000K, we find from (4.1.30) that 2 = 1.06 and erf(1) = 0.865. Thus,
including solidification increases the estimate of the age of the Earth by a factor of 4/3.

The calculations made by William Thompson were front page news in the London papers
of the time and a debate raged over the age of the Earth. On one side were the clergy of the
Church of England led by Bishop Wilburforce, who interpreted the Bible as giving an age
of the Earth of some 4,000 yr. On the other side were the noted geologists of the day led by
James Hutton, who argued that the sedimentary and fossil records required a much greater
age for the Earth. However, they could not place quantitative limits on their estimates and
much of the scientific establishment of the day accepted Thompson’s estimate of the Earth’s
age, 50-100Myr, as more reliable since it was based on seemingly reasonable theoretical
arguments.

It was only with the discovery of radioactive elements and the implications for heat sources
distributed within the Earth that a new approach to the thermal structure of the Earth was
taken. Holmes (1915a,b, 1916) not only suggested that the decay of radioactive elements
heated the interior of the Earth, but he also used their decay constants to suggest that the age
of the Earth was billions of years.

4.1.3 Conductive Cooling with Heat Generation

The concept of secular cooling was subsequently replaced by the concept of a steady-state
heat balance. The heat flux from the interior of the Earth was thought to be balanced with the
heat generated by the decay of the radioactive elements. The most popular model involved
a near-surface layer of thickness y; with a uniform rate of heat production per unit mass H
overlying an interior totally depleted in the heat-producing elements. Again it was assumed
that heat transport was by conduction.

On the assumption that heat is transported (conducted) only in the vertical direction and
that there are no time variations, the heat conduction equation with heat sources can be
written as

d*T

0=k—— +pH 4.1.32
0 i ( )
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For the boundary conditions 77 = Tpat y = 0 and d7/dy = O at y = yj, (4.1.32) can be
integrated to give

pH y?

If, in addition, the temperature at the base of the layer is prescribed to be the mantle
temperature 77, we have

WelTy — T
Bl s e 10_0) (4.1.34)

Since the surface thermal gradient (dT /dy)o can also be prescribed, we find

2(T1 — To)

= 4.1.35
M= At dy), Lot

2
H = # (ﬂ) (4.1.36)

20(1h —Tp) \ dy
(D mm(@)] @

— y| — el e e | R i
0Ty ol T am =) \dy

For T — Ty = 1,300K and (dT /dy)o = 25 Kkm™!, (4.1.35) gives y; = 104 km. Further,
for p = 3,300kgm > and k = 3.3Wm ' K !, (4.1.36) gives H = 2.40 x 1079 Wkg~1.
The resulting temperature profile is given in Figure 4.5. The thickness of the layer is about
a factor of 3 larger than the thickness of the continental crust, but the concentration of
heat-producing elements is very nearly that of typical continental rocks.

The basic hypothesis of an upward concentration of heat-producing elements with steady-
state heat conduction was the generally accepted explanation for the temperature distribution
in the Earth’s interior from about 1920 to the late 1960s. It provided an explanation for the
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Figure 4.5. Near-surface temperature distribution in the Earth assuming a conduction profile with the heat-
producing elements uniformly distributed in the region 0 < y < y1. On the assumption thatdT'/dy = Qat y =
yi and for (dT/dy)y =25 Kkm™!, T} — Ty = 1,300 K, we have y; = 104kmand H = 2.4 x 10710 Wkg~1.
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temperature gradient in the continental crust, but allowed for the solid upper mantle required
by seismic studies.

The hypothesis that the heat-producing elements were strongly concentrated in the crust
led to the prediction that the surface heat flow in the oceans, where the crust was known to be
thin, would be considerably lower than the surface heat flow in the continents. Measurements
by Revelle and Maxwell (1952) in the Pacific and by Bullard (1954) in the Atlantic showed
that oceanic heat flow was very nearly equal to continental heat flow, so the prediction was
not valid. Bullard et al. (1956) attributed this equality of heat flow to mantle convection.
Nevertheless it took another 15 years before the model with an upward concentration of heat
sources and steady-state heat conduction was discarded.

4.1.4 Mantle Convection and Mantle Temperatures

The acceptance of mantle convection in the late 1960s provided a natural explanation for the
high thermal gradients near the Earth’s surface; they are a consequence of thermal boundary
layers associated with mantle convection. Beneath the boundary layers heat transport is
primarily by convection and the thermal gradient at depth is nearly adiabatic.

Three distinct thermal regimes thus occur within the mantle—crust system (Jeanloz and
Morris, 1986). First, there are nearly adiabatic regions, where advective heat transport by
vertical motion dominates all other heat transfer mechanisms. Most of the lower mantle
appears to be in this category, as are the upper mantle beneath the lithosphere and portions
of the transition zone — roughly 90% of the mantle (Ito and Katsura, 1989). Practically all of
the outer core is in this category as well. These regions are characterized by nearly isentropic
(adiabatic) radial variations of temperature. Second, there are regions where heat transfer by
advection is roughly equal to heat transport by conduction. These are the thermal boundary
layers described in the previous section. Included in this category are oceanic lithosphere,
part of the D” layer at the base of the mantle, and part of the subcrustal lithosphere beneath
continents. There also may be interfacial thermal boundary layers within the transition zone.
Finally, there are regions where conductive heat transport dominates, called conduction
layers. The continental crust and the upper mantle attached to it are the most important
examples of this group. Altogether, conductive layers comprise less than 2% of the volume
of the Earth.

Mantle convection can account for virtually all of the known temperature structure in the
nearly adiabatic advective regions and thermal boundary layers. Taking into consideration the
near-surface concentration of radioactive heat sources, it is possible to explain temperatures
in the continental crust as well. This is certainly one of the major successes of convection
theory.

The precision with which temperatures are known degrades with depth, and reflects the
increased uncertainty in composition and thermodynamic parameters in the deep mantle and
core. At the present time, lithospheric temperatures can be estimated to within about £10%.
The uncertainty increases with depth, and in the lower mantle and the core reaches perhaps
+30%, or about +1,000K. Unlike seismic structure, lateral variations in temperature are
not small perturbations to the spherically averaged geotherm. In the upper mantle, lateral
temperature variations approach £50% of the spherical average temperature. The three-
dimensional thermal structure of the mantle is closely connected to the pattern of mantle
convection. Anomalously high temperatures are associated with regions of ascending flow,
while anomalously low temperatures characterize regions with descending flow, such as
subduction zones.
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In addition to temperature, an understanding of mantle convection requires a knowledge
of other thermodynamic parameters and properties, including density p, pressure p, specific
heats ¢, and ¢,, thermal expansivity o, thermal conductivity k, thermal diffusivity «, and the
Griineisen parameter y. The thermodynamic properties of mantle phase transformations,
including solid—solid and solid-liquid reactions, are also important. Some of these parame-
ters are reasonably well constrained for the upper mantle by laboratory measurements and
inferences drawn from geophysical data. At greater depths, however, the situation changes.
Some properties, such as density, are known from seismology, while others, such as the spe-
cific heats, are well constrained by solid-state theory. Others, such as thermal conductivity,
are poorly known.

4.1.5 Surface Heat Flow and Internal Heat Sources

Heat escaping from the Earth’s interior is, in large part, brought to the surface by mantle
convection. The Earth’s surface heat loss is therefore a directly observable measure of its
internal convective activity and thermal structure. The total heat flow from the interior of
the Earth Q is given by

() =g.A: +q,;4 (4.1.38)

where g, is the mean continental heat flux, A, is the area of the continents, g, is the
mean oceanic heat flux, and A, is the area of the oceans. The distribution of the Earth’s
surface heat flux has been shown in Figure 2.8; values of g, and g, have been given
by Pollack et al. (1993). The area of the continents, including the continental margins,
is A, = 2 x 10%km?. Multiplication of this by g, = 65 mW m™? gives the total heat
flow from the continents O, = 1.30 x 10> W. The area of the oceans, including the
marginal basins, is A, = 3.1 x 10® km?. Multiplication of this by g, = 101 mW m ™2
gives the total heat flow from the oceans Q, = 3.13 x 10W. With 0 = Q, + O,
we find Q equal to 4.43 x 1013 W. Accordingly, the mean surface heat flow for the
Earth g, is given by 4.43 x 103 W divided by the Earth’s surface area of 5.1 x 108 km?,
org, = 87mWm™2.

A substantial part of the heat lost through the Earth’s surface originates in the interior of
the Earth by the decay of the radioactive elements uranium, thorium, and potassium. Some
part of the surface heat loss must also come from the overall cooling of the Earth through
geologic time. An upper limit to the concentration of radioactive elements in the Earth can
be derived by attributing all the surface heat loss to the radioactive heat generation. The
upper bound to the mean heat generation per unit mass H is then given by

_ 9
H=— (4.1.39)

where M is the mass of the heat-producing material in the Earth. If we assume that the
entire mass of the Earth, 5.97 x 10** kg, is involved in radiogenic heat generation and take
Q = 4.43 x 101°W, we find an upper bound of H = 7.42 x 102 Wkg~!. However, on
the basis of geochemical studies, it can be argued that the core cannot contain a significant
fraction of the heat-producing elements in the Earth. In this case, the mass in (4.1.39)
should be the mass of the mantle, 4.0 x 10**kg, and the upper bound becomes H =
11.1 % 10712 Wkg .
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A reduction must be made in the value of H appropriate to the mantle, since a substantial
fraction of the heat lost from the continents originates in the highly concentrated radioactive
isotopes of the continental crust. We estimate that of the mean continental heat flux of
65 mW m’z, 28 mWm 2 can be attributed to the mantle and 37 mW m™2 to radioactive
isotopes in the crust. This crustal contribution corresponds to a total heat flow of 7.4 x 1012 W,
or 17% of the total surface heat flow. Reduction of the mantle heat production by this amount
gives H = 9.22 x 1072 Wkg~! as an upper bound to the mean heat generation rate per
unit mass of the mantle.

Only a fraction of the Earth’s present surface heat flow can be attributed to the decay
of radioactive isotopes presently in the mantle. Since the radioactive isotopes decay into
stable isotopes, heat production due to radioactive decay decreases with time. For example,
we show below that the heat production three billion years ago was about twice as great
as it is today. Because less heat is being generated in the Earth through time, less heat is
also being convected to the surface. Thus, the vigor of mantle convection decreases with
the age of the Earth. Since the strength of convection is dependent on viscosity, and the
viscosity of the mantle is a sensitive function of its temperature, a decrease in the heat flux
with time leads to a decrease in the mean mantle temperature. This cooling of the Earth in
turn contributes to the surface heat flow. We consider this problem in detail in Chapter 13,
and estimate that about 80% of the present surface heat flow can be attributed to the decay
of radioactive isotopes presently in the Earth while about 20% comes from the cooling of
the Earth. If we reduce the above upper bound to the present mantle heat production rate
accordingly, we obtain H = 7.38 x 10712 Wkg~! as an estimate of the actual present mean
rate of radiogenic heat production per unit mass in the mantle.

Radioactive heating of the mantle and crust is attributed to the decay of the uranium
isotopes 2*>U and 2*8U, the thorium isotope 2*?Th, and the potassium isotope “°K. The
rates of heat production and the half-lives 71,2 of these isotopes are given in Table 4.2. At
the present time natural uranium is composed of 99.28% by weight 23U and 0.71% >3 U.
Natural thorium is 100% 23>*Th. Natural potassium is composed of 0.0119% #°K. The present
rates of heat production of natural uranium and potassium are also given in Table 4.2.

The ratios of potassium to uranium and thorium to uranium are nearly constant in a wide
range of terrestrial rocks. Based on these observed ratios we take C{})( / C({)J = 10* and
Cgh /C([)J = 4, where C(I)(, Cgh, and Céj are the present mass concentrations of potassium,
thorium, and uranium, respectively. The total present heat production rate per unit mass Hy

Table 4.2. Rates of Heat Release H and Half-lives t1; of the
Important Radioactive Isotopes in the Earth’s Interior”

Isotope H 712 Concentration, C
(Wkg™) (yr) (kgkg™)

238 9.46 x 1073 4.47 x 10° 30.8 x 1077

Dy 5.69 x 1074 7.04 x 108 0.22 x 1077

U 9.81 x 10~ 31.0 x 1072

2% 7h 2.64 x 107 1.40 x 1019 124 x 1072

i ¢ 2.92 x 1075 1.25 x 10° 36.9 x 1072

K 3.48 x 1077 31.0 x 1072

@ Heat release is based on the present mean mantle concentrations of
the heat-producing elements.
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is related to the heat generation rates of the individual radioactive elements by

CTh CK

By =iy (HU + o M L HK) (4.1.40)
Co Cy

With Hy = 7.38x 10~ 12 Wkg ! and the other parameters as given above and in Table 4.2, we

find that Céj =3.1 x 108 kgkg™! or 31 ppb (parts per billion by weight). These preferred

values for the mean mantle concentrations of heat-producing elements are also given in

Table 4.2.

The mean heat production rate of the mantle in the past can be related to the present heat
production rate using the half-lives of the radioactive isotopes — see Section 12.4.1. The
concentration C of a radioactive isotope at time ¢ measured backward from the present is
related to the present concentration Cg and the half-life of the isotope t; 2 by

£In2
c:coexp( = ) (4.1.41)
“\ 112

Thus, the past mean mantle heat production rate is given by

tin2
H =09927CY BV exp( - )

2381J
B

: fIn2
+0.0072cYH™Y exp(i)

35y
tIn2
+ CthTh exp( T )

12
tijo

_ 40 tln?2 _
+1.28 x 107*cEH Kexp( mK} (4.1.42)

T2

The rate of mean heat production based on (4.1.42) and parameter values in Table 4.2 is
plotted as a function of time before the present in Figure 4.6. The past contributions of the
individual radioactive elements are also shown. It can be seen that the rate of heat production
3 Gyr ago was about twice the present value. At the present time heat is produced primarily
by 238U and 232Th, but in the distant past >3 U and *°K were the dominant isotopes because
of their shorter half-lives.

The concentrations of the heat-producing elements in surface rocks vary considerably.
Some typical values are given in Table 4.3. The mantle values from Table 4.2 are included
for reference. Partial melting at ocean ridges depletes mantle rock of incompatible elements
such as uranium, thorium, and potassium. These incompatible elements are concentrated in
the basaltic partial melt fraction. As aresult, the oceanic crust (tholeiitic basalt) is enriched in
these elements by about a factor of 4 relative to the undepleted mantle. Peridotites that have
been depleted in the incompatible elements are sometimes found on the surface of the Earth.
A typical example of the small concentrations of the heat-producing elements in a “depleted”
peridotite 1s given in Table 4.3. Processes that lead to the formation of the continental crust,
such as the volcanism associated with ocean trenches, further differentiate the incompatible
elements. The concentrations of the heat-producing elements in a typical continental rock
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Figure 4.6. Mean mantle heat production rates due to the decay of the radioactive isotopes 2387, 259, 207,

and “YK as functions of time measured back from the present.

Table 4.3. Typical Concentrations of the Heat-producing Elements in Several
Rock Types and the Average Concentrations in Chondritic Meteorites

Rock Type Concentration
U Th K

(ppm) (ppm) (%)
Reference undepleted mantle 0.031 0.124 0.031
“Depleted” peridotites 0.001 0.004 0.003
Tholeiitic basalt 0.9 2.7 0.83
Granite 4.7 20 4.2
Shale A7 12 2.7
Average continental crust 1.42 5.6 1.43
Chondritic meteorites 0.012 0.042 0.085

such as a granite are quite variable, but in general they are an order of magnitude greater than
in tholeiitic basalts. Representative values of concentrations in granite are given in Table 4.3.

It is generally accepted that the chondritic class of meteorites is representative of primitive
mantle material. The average concentrations of the heat-producing elements in chondritic
meteorites are listed in Table 4.3. The concentrations of uranium and thorium are about
a factor of 2 less than our mean mantle values, and the concentration of potassium is about
a factor of 3 larger. The factor of 6 difference in the ratio C (If JE, ([)J is believed to represent a
fundamental difference in elemental abundances between the Earth’s mantle and chondritic
meteorites.

In the next two sections we will consider the structure of the upper thermal boundary layer
comprising the oceanic and continental lithospheres. These boundary layers are relatively
thin with thickness between 0 and about 200km. In determining these thermal structures
we will neglect adiabatic changes in temperature. Since the adiabatic gradient is only about
0.4 Kkm™! this is a reasonable approximation. A systematic treatment of this approximation
will be given in Chapter 6.
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4.2 Thermal Regime of the Oceanic Lithosphere

The oceanic lithosphere is the upper thermal boundary layer of the convecting mantle. It
is formed at accretional plate margins by the cooling of hot mantle rock. The oceanic
lithosphere is convected away from ridge crests at the spreading rate deduced from the
pattern of magnetic anomalies on the seafloor (see Chapter 2). The oceanic lithosphere
thickens with time as the upper mantle cools by conduction and by hydrothermal heat loss
to the oceans. The resulting thermal contraction produces an increase in seafloor depth with
crustal age in the direction of seafloor spreading. Accompanying the increase in seafloor
depth with crustal age are decreases in surface heat flow and a decreasing geoid height
with age. It has been established that these trends do not continue unbroken onto the oldest
oceanic lithosphere. Instead, there is a gradual transition in the vicinity of 70-100Myr
crustal ages, which appears to separate two different thermal boundary layer regimes. For
crustal ages less than 70 Myr, the statistical variation in seafloor depth can be explained by
a cooling half-space model. In this model, the depth of the water column, relative to its
depth at the ridge crest, increases with the square root of the crustal age. The actual seafloor
topography approximates this behavior at young ages (Parsons and Sclater, 1977). At greater
ages, seafloor depth increases more slowly, on average. A similar trend is observed in geoid
heights. The geoid height decreases linearly with crustal age to about 50Myr in the North
and South Atlantic and in the Indian Ocean (Sandwell and Schubert, 1980).

Interpretations of surface heat flow are more complex. Heat flow on the ocean floor is
obtained from many thousands of point measurements and is subject to large variability.
Variability in heat flow can be reduced by the careful selection of measurement sites and
appropriate averaging (Sclater et al., 1980). For crustal ages between about 10 and 80 Myr
the heat flow is inversely proportional to the square root of the crustal age, in agreement
with the half-space cooling model.

Significant departures occur on young crust, presumably because of additional heat loss
by hydrothermal circulation systems (Lister, 1980). There is also a significant departure
from the predictions of the cooling half-space model for old ocean crust. Densely spaced
heat flow measurements in the Pacific by Von Herzen et al. (1989) have suggested that the
average heat flow on older ocean crust may also be higher than the heat flow predicted by
the cooling half-space model, and this is substantiated in the data compiled by Stein and
Stein (1992) (see also Stein and Stein, 1996).

4.2.1 Half-space Cooling Model

We first demonstrate that the temperature distribution in the oceanic lithosphere as deter-
mined using the cooling half-space model described in the previous section provides an
adequate first-order model for ages less than about 80Myr. The geometry is illustrated
in Figure 4.7. Because of its low temperature, the lithosphere behaves as a rigid mov-
ing plate. The temperature in the plate is governed by the convection—conduction equation
(see Chapter 6)

aT 2T " 3’T - @D
l —_— ey rttta]. . .
T T\ 9y?

where 1 is the velocity of seafloor spreading. The Peclét number for the oceanic lithosphere
is defined by Pe = ugL/k, where L is a typical distance from the ocean ridge. With
g = 50 mm yr’l, L = 1,000km, andx = I mm?s—!as typical values, we find Pe = 1,600.
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Figure 4.7. A sketch showing the model of oceanic lithosphere formation by seafloor spreading from a mid-
ocean ridge used to derive the thermal boundary layer cooling curves. Solid contours are isotherms; dashed
contours are streamlines. The depth to the subsiding seafloor w and the thickness of the lithosphere y; are
shown.

For a large Peclét number it is appropriate to make the boundary layer approximation and
neglect horizontal heat conduction compared with vertical heat conduction, and (4.2.1)
becomes

aT 9T

xR v St 4.2.2
Waw ay? )

Since t = x /ug we can rewrite (4.2.2) as

aT 82T
—_— = K
ot dy?

(4.2.3)

which is identical to (4.1.1). The required initial and boundary conditions are 7 = T at
t=0,T =Tpaty =0,and T — T as y — 0. Thus, the solution given in (4.1.20) is
valid and the temperature distribution in the oceanic lithosphere is

T, —T :
A =T :erfc(_L

T —To ) (4.2.4)

Isotherms as a function of depth and age are given in Figure 4.8 for 71 — Tp = 1,300 K and

k= 1mm?s .

From (4.1.23), the surface heat flow go as a function of age ¢ is given by
k(T - Ty)

0=

(4.2.5)

For k — 3.3Wm~—! K~! and other values as above, the surface heat flow is related to the
age of the seafloor ¢ by

o E (4.2.6)
QO—ﬁ 2,
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Figure 4.8. Isotherms as a function of depth and age in the oceanic lithosphere from (4.2.4) taking T} —
To = 1,300 K and x = 1 mm? s~!. The isotherms are values of T — Ty in K.
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Figure 4.9. Heat flow as a function of the age of the ocean floor. The data points are from sediment-covered
regions of the Atlantic and Pacific Oceans (Lister et al., 1990). Comparisons are made with the half-space
cooling model (HSCM) from (4.2.6) and the plate model from (4.2.29) with yr g = 95km (PM95) and with
vro = 125km (PM125).

with 7 in Myr and ¢ in mW m™2. This result is compared with measurements of heat flow
compiled by Lister et al. (1990) in Figure 4.9. Many measurements of the heat flow through
the ocean floor have been carried out and, in general, they have a great deal of scatter (Stein
and Stein, 1992, 1996). A major cause of this scatter is hydrothermal circulation through
the oceanic crust. The heat loss associated with these circulations causes observed heat
flows to be systematically low. Because of this problem, Lister et al. (1990) considered only
measured values in thick sedimentary cover that would inhibit hydrothermal circulations.
The heat flow predicted by the half-space cooling model is in reasonable agreement with the
data, but it is somewhat less than the measured values.
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The thickness of the oceanic lithosphere from (4.1.22) is
yr = 2.32 (k)2 4.2.7)

For our nominal value of k = 1 mm? s, the thickness of the lithosphere in km is related
to the seafloor age in Myr by

yL = 134/t (4.2.8)

With # = 10 Myr we have y; = 41km and with 7 = 100 Myr we have y;, = 130km. It
should be emphasized that the thickness given in (4.2.7) 1s arbitrary in that it corresponds to
(T) — T)/(T1 — Tp) = 0.9.

The temperature distribution in the oceanic lithosphere can also be used to predict the
morphology of oceanic ridges. As the oceanic lithosphere thickens, its temperature decreases
and its density increases due to thermal contraction. The heavier lithosphere sags downward,
thus deepening the oceans with increasing distance from the ridge. The depth of the ocean
as a function of crustal age can be found by the application of the principle of isostasy, based
on an assumed hydrostatic equilibrium. The principle of isostasy states that there 1s the same
mass per unit area between the surface and some depth of compensation for any vertical
column of material. This is equivalent to the assumption that the lithostatic pressure at some
depth is horizontally homogeneous.

The mass per unit area in a column of any age is

YL
f pdy + wpy
0

where y;. is the thickness of the lithosphere, py, is the density of water, and w is the depth
of the ocean floor below the ridge crest. At the ridge crest, p = p) the deep mantle density,
and the mass of a column of vertical height w + yz, is p1(w + y.). Hydrostatic equilibrium
requires that

YL

il = STl fo (o — pydy=D0 42.9)

The first term in (4.2.9) represents a negative mass because water with density p,, is less
dense than the mantle rock it has replaced because of the subsidence of the seafloor a distance
w. The second term in the equation represents a positive mass because thermal contraction
in the cooling lithosphere causes the density p to be higher than the reference hot mantle
rock density pi. Introduction of the volume coefficient of thermal expansion « allows us to
write

p—p1=pa(l —T) (4.2.10)

Upon substitution of the temperature profile from (4.2.4)into (4.2.10) and further substitution
of the result into (4.2.9), we obtain

00 y
_ = = d 4.2.
w (o1 — pw) = proe (Th To)/(; erfc[zﬁ} y (4.2.11)

Since p — pj and T — T at the base of the lithosphere, the limit on the integral has been
changed from y = yy, to y = oo. We can rewrite (4.2.11) using (4.1.3) with the result

_ 2p1a (11 — To)
(p1 — pw)

(k)72 f erfe(n) dn (4.2.12)
0
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The definite integral has the value

e 1
it dn = — 42.13
/0 erfc(n) dn = ( )

so that

2 i — T; i e
p = 21 (h — To) (fﬁ) 4.2.14)

(01 — pPw) Vs

Equation (4.2.14) predicts that the depth of the ocean increases with the square root of
the age of the ocean floor. For p; = 3,300 kgm_3, pw = 1,000kg m 3, k = 1 mm? s—1,
Ty — Top = 1,300K, and « = 3 x 107> KL, the ocean subsidence w in km is related to the
seafloor age in Myr by

w = 0.35+/1 (4.2.15)

With t = 10Myr we have w = 1.1km and with r = 100 Myr we have w = 3.5km.
This result with a ridge depth of 2.5km is compared with seafloor depths in the oceans in
Figure 4.10. For this comparison we have chosen the depths given by Johnson and Carlson
(1992) obtained from DSDP (Deep Sea Drilling Program) and ODP (Ocean Drilling Pro-
gram) drill sites. Corrections have been made for sediment thickness, and “normal” crust in
the Atlantic, Pacific, and Indian Oceans is considered. Other comprehensive compilations
of ocean depth data have been given by Renkin and Sclater (1988) and by Kido and Seno
(1994) with similar results.

For seafloor ages of less than about 80 Myr the data correlate well with the half-space
cooling model result given in (4.2.15). At ages greater than about 80 Myr the seafloor is
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Figure 4.10. Seafloor depth as a function of age in the Atlantic, Pacific, and Indian Oceans. Data are from
DSDP and ODP drill sites on normal ocean crust and depths have been corrected for sediment cover (Johnson
and Carlson, 1992). Comparisons are made with the half-space cooling model (HSCM) from (4.2.15) and the
plate model from (4.2.32) with yzo = 95 km (PM95) and with y;¢ = 125 km (PM125).
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systematically shallower than the half-space cooling model prediction. The topography data
in Figure 4.10 have much less scatter than the heat flow data in Figure 4.9, perhaps because
the topography is an integral measure of the entire thermal structure of the lithosphere rather
than the near-surface thermal gradient contaminated by hydrothermal effects.

We next consider a third independent measure of the thermal structure of the oceanic
lithosphere. The Earth’s gravitational field is a measure of the density distribution within the
Earth. As discussed above in connection with seafloor subsidence, it is appropriate to assume
isostatic equilibrium for the oceanic lithosphere. Haxby and Turcotte (1978) showed that
the surface gravitational potential anomaly AU due to a shallow, long-wavelength isostatic
density distribution is proportional to the dipole moment of the density distribution beneath
the point of measurement:

h

Al = ZJTG'f yAp(y)dy (4.2.16)
0

where G is the gravitational constant, & is the depth of compensation, and Ap(y) is the
difference between the density p(y) and a reference density.
The gravitational potential anomaly can be related directly to the geoid anomaly AN by

AU = —gAN (4.2.17)

The geoid anomaly is the vertical distance between the actual equipotential surface of the
Earth and the reference spheroid. Substitution of (4.2.17) into (4.2.16) gives

2nG ("
AN = —”f yAp (y) dy (4.2.18)
g Jo

With the mantle density beneath the oceanic ridge taken as the reference density (Ap =
o — p1), the geoid anomaly associated with the subsiding, thermally compensated oceanic
lithosphere can be written as

2 0 o0
AN = B U y (pw — p1) dy +f0 y(p—p1) dy} (4.2.19)
o

The first term on the right side of (4.2.19) can be integrated directly and the second term can
be rewritten using (4.2.10) relating density to temperature. The result is

AN = 2276 {(m — ) W
g 2

By using (4.2.14) for the ocean floor depth w and (4.2.4) for the temperature distribution
in the lithosphere, we can obtain the following simple formula for the geoid anomaly over
a spreading ridge:

+a,01[ By — T dy} (4.2.20)
0

AN =

2 7 Gprak (Th 0) =1+ pre (Ty 0)}r (4.2.21)

g (1 — pw)

This geoid anomaly is a linear function of the age of the seafloor. For pi = 3,300 kg m~3,
k =1mm2s~ ! T) —To = 1,300K,and ¢ = 3 X 10~3 K~ !, we find that the geoid anomaly
AN in m is related to the age t in Myr by

AN = —0.18¢ (4.2.22)

With 1 = 10 Myr the geoid anomaly is AN = —1.8m and with t = 100 Myr the geoid
anomaly is AN = —18m.
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Figure 4.11. Geoid anomalies relative to ridge crests are given as a function of seafloor age for the North
Atlantic, South Atlantic, SE Pacific, and SE Indian Oceans (Sandwell and Schubert, 1980). Comparisons are
made with the half-space cooling model (HSCM) from (4.2.22) and the plate cooling model from (4.2.35) with
yro = 95 km (PM95) and with y o = 125 km (PM125).

Over the oceans the sea surface represents an equipotential surface to a first approximation.
Deviations are due to tides, ocean currents, and storms. Laser altimeter measurements of
the sea surface from satellites define the geoid over the oceans and provide maps of geoid
anomalies. Geoid anomalies as a function of seafloor age for several oceans are given
in Figure 4.11 (Sandwell and Schubert, 1980). Also included in the figure is the linear
prediction from (4.2.22). Reasonably good agreement is found between theory and the data
for the Southeast Indian and North Atlantic Oceans, but there is considerably more scatter
than with the topography data. This scatter can be attributed to the geoid anomalies caused
by deeper density anomalies in the mantle. This problem has also been considered in detail
by Richardson et al. (1995).

The oceanic lithosphere on the two sides of a fracture zone ideally has a constant age
difference 1, — f1. Associated with this age difference is an offset in the geoid. If the half-
space cooling model is valid, then the offset in the geoid AN, — AN is related to the age
difference across the fracture zone 1, — #; by (4.2.22) with the result

ANy — ANy

= —0.18 mMyr~! (4.2.23)
h—n

The ratio of geoid offset to the age difference across a fracture zone is predicted to be a
constant (Detrick, 1981; Sandwell and Schubert, 1982; Cazenave et al., 1983; Cazenave,
1984; Driscoll and Parsons, 1988; Marty et al., 1988; Freedman and Parsons, 1990). Ratios
of geoid offset to age difference, (ANy — ANy) /(12 — t1), for the Mendocino fracture
zone are given in Figure 4.12 as a function of the mean age of the crust at the fracture
zone, t = (t) + t)/2. The data are from Sandwell and Schubert (1982) and from Marty
et al. (1988). Although there is considerable scatter, the magnitude of the geoid offset—age
difference ratio appears to systematically decrease from the value predicted by (4.2.23) at
older ages.

Observations of surface heat flow, bathymetry, and geoid are all in quite good agreement
with the half-space cooling model for ages less than about 80 Myr. The bathymetry data
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Figure 4.12. Magnitude of the ratio of the geoid offset AN, — AN to the age difference f; — #; across the
Mendocino fracture zone as a function of the mean age of the seafloor 7 = (7] +12)/2. The squares are the data
of Sandwell and Schubert (1982) and the circles are the data of Marty et al. (1988). Comparisons are made
with the half-space cooling model (HSCM) from (4.2.23) and with the plate cooling model from (4.2.36) with
yro = 95km (PM95) and with yy o = 125 km (PM125).

show the least scatter and show a clear ﬂattcmng of the bathymetry versus age curves at
greater ages.

Question 4.1: Why are there deviations from the half-space cooling model for
the oceanic lithosphere at seafloor ages greater than about 80 Myr?

4.2.2 Plate Cooling Model

As discussed above, observational evidence indicates that the oceanic lithosphere does not
continue to thicken with age at ages greater than 60—100Myr as predicted by the half-space
cooling model. The physical explanation is that basal heating of the oceanic lithosphere
occurs either due to the impingement of plumes or due to secondary convection. A model
for this process is provided by the cooling of a finite thickness plate (McKenzie, 1967).

The constant thickness of the plate is prescribed to be yo, the thickness of the lithosphere
at large times. At the surface of the plate the temperature is the water temperature 7o (7" = To
at y = 0); at the base of the plate the temperature is the mantle temperature 771 (7" = 17 at
y = yro). Initially at the ridge, x =t = 0, the temperature is the mantle temperature (T = T}
at 1 = 0). We require the solution of the heat conduction equation (4.2.3) that satisfies these
boundary conditions. Carslaw and Jaeger (1984, p. 100) have given the appropriate solution
in the form of an infinite series

26 Do i
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