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1. Introduction

Parameterized models of whole mantle convection have been used
to study the thermal history of the Earth and to infer some physical
properties of the mantle such as radiogenic heat source content.

These models generally show that mantle temperature and heat
flow decrease with time, while mantle viscosity increases with time, all
in accordance with a cooling Earth. Furthermore, heat flow exceeds
radiogenic heat generation at the present day so that the Urey ratio,
the ratio of internal heat generation to surface heat flow, is less than
unity at present.

An essential feature of these parameterized convection thermal
history models is their inclusion of the strong temperature dependence
of mantle viscosity.
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The thermostat effect of temperature-dependent mantle viscosity
regulates the rate of mantle cooling; early in the Earth’s thermal
evolution, when the mantle is very hot, the viscosity is low, convection
is highly vigorous, and the mantle cools rapidly.

The rapid reduction in mantle temperature increases mantle
viscosity and reduces the vigor of convection and the rate of mantle
cooling. Throughout most of the Earth’s thermal history, cooling is
gradual, about 100 K/Gyr. Mantle viscosity is not only a strong function
of temperature, but it depends sensitively on mantle volatile content
as well. Dissolved volatiles in the mantle lower the creep activiation
enthalpy und thus reduce the viscosity at a given temperature. Thus, a
loss of volatiles from the mantle (degassing or outgassing) would stiffen
the mantle and require an increase in mantle temperature to maintain
a requisite vigor of convection.

However, almost all of the previous parameterized convection
thermal history studies have included the dependence of mantle
viscosity on volatile content.
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The inclusion of a volatile-dependent as well as temperature-
dependent mantle viscosity into thermal history modelling is important
not only for a correct simulation of mantle evolution, but also for its
implications regarding the evolution of the atmosphere.

The dependence of mantle viscosity on both temperature and
volatile content produces a strong coupling between mantle thermal
evolution and the degassing/regassing history of the mantle (regassing
refers to the volatile recharching of the mantle by tectonic processes
such as subduction, overthrusting, and delamination).

In the thermal history study of Jackson and Pollack (1987), the
degassing history of the mantle was a priori specified by assuming
explicit functional forms for the dependence of activation enthalpy
(or temperature) on time. In the present paper we self-consistently
solve for the evolution of both mantle temperature and the mantle
degassing/regassing rate.
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2. Model Equations

The basic equations of parametrized convection are developed in detail
elsewhere; we will only briefly review the key concepts and equations.
The kinematic viscosity of the mantle is assumed to have the following
temperature dependence:

ν = ν̄ · exp(A/T ) (1)

where A is the activiation temperature for solid-state creep, T is a
characteristic mantle temperature, and ν̄ is a constant. Decaying
radiogenetic heat sources are assumed to produce energy in the
mantle at a rate Q per unit volume, where:

Q = Q0 · exp(−λt) (2)

and Q0 and λ are constants, and t is the time.
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The Rayleigh number Ra for a convecting mantle is:

Ra =
gα · (T − Ts)(Rm − Rc)3

κ · ν
(3)

where g is the acceleration of gravity, α is the coefficient of thermal
expansion, Ts is the surface temperature, Rm and Rc are the mantle
outer and inner radii, respectively, and κ is the thermal diffusivity.
Mantle heat flow q is parameterized in terms of Ra by [2]:

q =
k · (T − Ts)

Rm − Rc
·

( Ra

Racr

)β

(4)

where k is the thermal conductivity, Racr is the critical value of
Ra for the onset of convection, and β is an empirically determined
dimensionless constant found to be around 0.3.
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Conservation of energy gives an equation for the time rate of change
of the characteristic mantle temperature Ṫ :

ρc · (R3
m − R3

c)
dT

dt
= −3R2

m q + Q · (R3
m − R3

c) (5)

where ρ is the density and c is the specific heat.

Equations (1) to (5) give a first-order non-linear differential equation
for the mantle temperature T (t), which, when given the temperature
T0 at time t = 0, is easily solved bey numerical integration. (We have
chosen an adaptable stepsize Runge-Kutta algorithm [13] to integrate
(1) to (5)).

This differential equation for T (t) has been the subject of several
studies. For example, Schubert et al. [2] and Jackson and Pollack [3]
used a constant value for A, and Jackson and Pollack [11] assumed a
specific function for the time dependence in A.
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3. Activation temperature and
degassing/regassing parameterizations

Experiments on the deformation of candidate mantle minerals have
revealed that dissolved volatiles such as water weaken the minerals
by reducing the activation energy E∗ for solid-state creep [14-16].
Activation energy is related to activation temperature by the equation:

A = E∗/R (6)

where R is the universal gas constant.

Chopra and Paterson [15] give values for the activation energy and
weight fraction of water for two samples of “wet” dunite as well as the
activation energy for both “dry” samples. The parameterization we use
for activation temperature as a function of volatile weight fraction is
a simple straight line drawn through the wet and dry points for each
type of dunite. Uncertainties in the data and the lack of additional data
preclude a more complicated parameterization.
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Accordingly, we write:

A = α1 + α2 · x (7)

where x is the volatile weight fraction and α1,α2 are constants
determined by the straight lines in Fig. 1.

The values of α1 and α2 according to Fig. 1 are

α1 = 6.4 · 104 K
α2 = − 6.1 · 106 K/(weight fraction) (Anita Bay dunite)
α2 = − 8.1 · 105 K/(weight fraction) (Aheim dunite)

The smaller value of α2 is representative of a mantle with a week
dependence of rheology on volatile content; the larger value of α2

typifies a strong dependence of mantle viscosity on the percentage
of volatiles.
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Our model requires a prescription for determining the mass of
dissolved volatiles in the mantle as a function of time. We have
identified the major mechanisms of mantle degassing and regassing
and have parameterized them to provide equations for the degassing
and regassing rates. The rate of mantle degassing [Ṁmv]d is given by:

[Ṁmv]d = ρmv · dmelt · S (8)

where ρmv is the density of volatiles in the mantle, dmelt is the average
depth from which volatiles are released from the mantle (assuming
complete outgassing to this depth), and S is the areal spreading rate
for the Earth’s mid-ocean ridges. The parameter dmelt can be thought
of as an “equivalent depth”, combining the actual ddepth of melting with
an efficiency factor for the release of volatiles. The rate of regassing
[Ṁmv]r is given by

[Ṁmv]r = fbas · ρbas · dbas · S · χr (9)

where fbas is the mass fraction of volatiles in the basalt layer, ρbas is
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the density of basalt, dbas is the average thickness of the basalt, and χr

is an efficiency factor representing the fraction of volatiles that actually
enters the deep mantle instead of returning to the surface through
back-arc volcanism. The value of dbas can be varied to reflect the
added contribution of a subducted sediment layer.

To obtain the spreading rate S as a function of known quantities we
use the relation between heat flow q and the average age of subduction
of oceanic crust τ [17, eq. 4-128]:

q =
2k · (T − Ts)

√

πκτ
(10)

where τ is given by
τ =

Ao(t)

S
(11)

and Ao is the area of ocean basins at time t.
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The solution of (10) and (11) for S is:

S(t) =
q(t)2πκAo(t)

[2k · [T (t) − Ts]]2
(12)

Reymer and Schubert [12] provide a formula for Ao(t) based on the
assumption of approximately constant continental freeboard over the
last 500 million years:

Ao(t) = A∗

o ·

[V ∗

oa

Vo
+

V ∗

ob · q
∗

Vo · q(t)

]

−1

(13)

where Vo is total volume of water in the oceans (assumed constant
in time), Voa is the volume of the ocean basins above the peak ridge
height, Vob is the volume of the ocean basins below the peak ridge
height, and asterisks denote present-day values.
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The differential equation for the mass of mantle volatiles is simple:

Ṁmv = [Ṁmv]r − [Ṁmv]d (14)

This equation assumes that no other fluxes of volatiles (such as
impact degassing) are significant. Interpretation of (14) requires an
assumption about the initial value of Mmv. We let:

Mmv(t = 0) = nm · Mocean (15)

where Mocean is the mass of the Earth’s oceans and nm is the number
of ocean masses initially in the mantle. We similarly express the initial
value of the mass of volatiles starting out on the surface as:

Ms(t = 0) = ns · Mocean (16)

where ns is the number of ocean masses originally in surface volatile
reservoirs.
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4. Model parameter values
To provide a starting point from which to begin our study we established
a nominal case using the parameter values given in Tables 1 and
2. Table 1 lists the values of the parameters pertaining to the basic
convection equations. Table 2 lists the values of the parameters used
for the degassing / regassing part of the calculation. Both tables
provide references for the assumed parameter values. The value of
the depth of melting dmelt is derived from an estimate of the depth
of the bassalt eutectic in the Archean [19, fig. 1]. This value is
too large to reflect present conditions, but it is intended to model
conditions prevalent in the early history of the Earth when convective
vigor was much greater. Since rates of volatile exchange in the model
(and presumably in the Earth) are much greater in the early part of a
calculation than they are toward the end of a calculation, the value of
dmelt should represent conditions early in Earth’s evolution.

Ringwood [20,21] has estimated that the mass of dissolved water
in the mantle is approximately three times that currently in the oceans.
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With the assumption that the total amount of water in the mantle-
hydrosphere-atmosphere system is conserved, we set nm = 4. The
value of Q0 is iteratively adjusted so that the heat flow q at t = 4.6 Gyr
is equal to the present day value, q∗ = 70 mW/m2.

Table 3 summarizes how the nominal case parameters were
modified to consider other evolutionary scenarios. The nominal case
is intended to demonstrate the effects of a strongly volatile-dependent
viscosity. Calculation 2 uses a weaker rheological volatile dependence,
and case 3 has a volatile-independent rheology.

The first three calculations all resulted in net outgassing from
the mantle. Thus for case 4, parameters were adjusted to diminish
degassing and promote regassing. Case 5 starts with a highly volatile-
charged mantle. Case 6 demonstrates the effects of an initially cool
mantle. Computations 7 and 8 test the effects of alternate values for ν̄
and λ used in other parameterized convection models.
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5. Parameter values

Table 1
Parameter Value Source
ν̄ 2.21 · 107 m2/s [11]
λ 3.4 · 10−10 yr−1 [3]
g 9.8 m/s2 [11]
α 3 · 10−5 K−1 [2,11]
κ 10−6 m2/s [2,11]
Rm 6271 km [2,11]
Rc 3471 km [2,11]
Ts 273 K [2,11]
k 4.2 W/mK [11]
Racr 1100 [2,11]
ρc 4.2 · 106 J/m3K [2,11]
β 0.3 [2,11]

Nominal case convection parameter values
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Table 2
Parameter Value Source
Mmantle 4.06 · 1024 kg [2]
dm 105 m [19]
fbas 0.03 [12]
dbas 5 · 103 m [12]
ρbas 2.95 · 103 kg/m3 [17]
χr 0.8 -
Mocean 1.39 · 1021 kg [27]
nm 4.0 [20,21]
ns 0 -
A∗

o 3.1 · 1014 m2 [18]
V ∗

oa 7.75 · 1017 m3 [18]
V ∗

ob 3.937 · 1017 m3 [18]
Vo 1.1687 · 1018 m3 [18]
q∗ 0.07 W/m2 [17]

Nominal case degassing/regassing parameter values
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Table 3
Calculation Conditions (modifications to the nominal case)
1 nominal
2 Aheim dunite parameterization
3 constant A, α1 = 5.60199 · 104 K, α2 = 0
4 dbas = 6 km, dmelt = 50 km, nm = 4, ns = 2
5 nm = 10, ns = 0
6 T (0) = 2000 K
7 ν̄ = 1.65 · 102 m2/s [2]
8 λ = 4.5 · 10−10 yr−1 [3]

Summary of computations
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Table 4
Calculation Q0 T Mantle Urey Viscosity Rayleigh

(J/m3 s) (K) volatile loss ratio (m2/s) number

1 1.43093 · 10−7 2480.0 1.48 0.743 4.953 · 1017 2.876 · 107

2 1.40006 · 10−7 2635.3 1.25 0.727 6.651 · 1017 2.297 · 107

3 1.43508 · 10−7 2372.1 1.56 0.745 3.986 · 1017 3.398 · 107

4 1.43540 · 10−7 2313.0 - 0.81 0.745 3.522 · 1017 3.738 · 107

5 1.45181 · 10−7 2447.1 7.03 0.754 4.641 · 1017 3.024 · 107

6 1.46151 · 10−7 2434.5 0.86 0.759 4.526 · 1017 3.082 · 107

7 1.63900 · 10−7 1762.2 1.82 0.851 9.007 · 1016 1.067 · 108

8 2.15071 · 10−7 2490.9 1.63 0.673 5.060 · 1017 2.829 · 107

Model results
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6. Results

Figure 4a: “Average” mantle temperature T and mantle viscosity ν

as functions of time for the nominal case (calculation 1)
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Figure 4b: Mantle Rayleigh number and amount of outgassing from the mantle
(in units of ocean masses) as functions of time for the nominal case
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Figure 4c: Heat flow from the mantle and the normalized area of the ocean basins
(from the parameterization of the spreading rate S) as functions of time

for the nominal case
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Figure 4d: Mantle degassing and regassing rates
as a function of time for the nominal case
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