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FE Methods (1D)

General remarks

The finite element method is based on a “weak” form of any partial
differential equation, using a corresponding integral version of the
governing PDE (called the “strong” form). The weak form is derived
from its strong form by a variational principle and by discretization
of the solution domain into a spatial mesh spanned by elements with
unknowns allocated to their vertices (called “nodes”).

The application of finite elements goes back to an engineer’s type
analysis of mechanical stability problems, the methodology is therefore
useful to solve problem sets with very complex domains and matches
object-oriented programming techniques. Furthermore, the retention
of the integral form can be beneficial for problems with difficult
boundary conditions or discontinuities which can be integrated.
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The flip-side of this is that the construction of the numerical equations
that need to be solved may take considerably longer than the actual
solution process itself. Variational methods are also particularly difficult
to constrain when iterative, implicit solution methods are used.

1. Solution algorithm

Usually, only spatial derivatives are discretized with the finite element
method, whereas finite differences are used to discretize the time
derivatives. The spatial discretization is carried out locally over small
regions of simple but arbitrarily shaped elements (the finite elements).

The discretization process itself results in a matrix equation relating
the loads (input) at specified points in the element (called nodes) to
the displacements (output) at these same points. In order to solve
the equations over large regions, one sums node-by-node the matrix
equations for smaller sub-regions (elements), finally ending up with the
assembly of a global matrix equation.
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This system of equations can then be solved by standard linear algebra
techniques to yield all nodal displacements, which completes the
numerical solution algorithm.
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2. Philosophy

Consider a boundary value problem given on a domain Ω with a
boundary Γ = ∂Ω such that a solution u(x) satisfies the PDE:

F{u(x)} = s(x) (1)

where F is some differential operator and s(x) a source term:

Figure 1: solution domain and its boundary
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As boundary conditions, we can have

Dirichlet (fixed value, “essential” BC)

u|∂Ω = g (2)

type constraints, where the value of u(x) is given on ∂Ω, and/or

Neumann (flux, “natural” BC)

ni

∂u

∂xi

= ~n · ∇u = h (3)

conditions, where we specify the derivatives at the boundary.

If the PDE is, for example, an elastic deformation problem, then
u(x) would be the displacements, and Dirichlet conditions of g = 0
correspond to “no-slip” conditions at the boundary ∂Ω.
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The finite element analysis then proceeds by two steps:

1. Converting the governing PDE from the regular, “strong” form (which
we used for FD) to the “weak” integral form.

2. Discretizing the domain Ω into “elements” on which an approximate,
numerical solution for u(x) is to be obtained using simplified
polynomials, so called basis resp. “shape” functions.

In this brief introduction, we only provide a highly abbreviated
treatment, lacking any mathematical rigor. In addition, we will omit
any detailed discussion of different element types, or shape functions,
as well as implementation issues such as order of integration.

However, these issues may become important in practice, as
choices in shape functions and element type may strongly affect
solution robustness and accuracy.
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To compare finite elements (FE) with finite difference (FD) methods,
their main differences are summarized in the following table:

Finite Differences Finite Elements
approximates the PDE approximates the solution of the PDE

mainly restricted to simple, complex geometries fairly
rectangular domains easily implemented

regional, or adaptive mesh regional mesh refinement easy, adaptive
refinement hard to implement refinement fairly straightforward

simple implementation involved first implementation
(special case of FE)

requires programming from for well-written existing code, only minor changes
scratch if solving new equations are needed to solve different equations
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3. Example: 1D heat conduction with finite elements

The various steps involved in performing the finite element method are
best illustrated with a simple example.
Consider the partial differential equation

∂T

∂t
= κ

∂2T

∂x2
+ Q (4)

which governs transient heat conduction in one-dimension with a
constant source term Q. The dependent variable in this equation is
the temperature T , the independent variables are time t and distance
x, and κ is the thermal diffusivity. We are interested in computing the
temperature function T (x, t) which satisfies equation (4).

The first step of the finite element method involves choosing an
element-type which defines where and how the discretization is carried
out. The simplest element for one dimensional problems is a 2-node
element (see Figure 2).
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One could use more nodes per element which would have the effect of
increasing accuracy, but it would also increase the amount of equations
and thus the cost of numerical solution.

Figure 2: (a) a 2-node, one dimensional finite element with (b) linear shape functions
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The second step of the finite element method involves approximating
the continuous variable T (x) in terms of nodal variables Ti using simple
functions Ni(x) called shape functions. If one focuses on one element
(which contains 2 nodes), and one assumes that temperature varies
linearly between two nodes, one can write

T (x) ≈ N1(x) · T1 + N2(x) · T2 (5)

or, using matrix notation,

T (x) ≈
[

N1(x) N2(x)
]

{

T1

T2

}

= ~N(x)T · ~T . (6)

In these equations, T (x) is the unknown continuous variable at time t

that needs to be approximated (within any given element) in terms of
the two temperatures T1 and T2 at the nodes “1” and “2”.
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Since we made the choice that temperature varies linearly between
two nodes, we have to use the following type of shape functions

N1(x) = 1 −
x

L
, N2(x) =

x

L
, (7)

where L is the length of the element and x is the spatial variable which
varies from 0 at node 1 to L at node 2 (Figure 2b).

The shape functions have the following important properties:

- N1 = 1 at node “1” while N1 = 0 at node “2”

- N2 = 0 at node “1” while N2 = 1 at node “2”

- N1 + N2 = 1 (over the entire element)

- the Ni are only locally defined (i.e., they only connect adjacent nodes)
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Note that the shape functions Ni(x) are simply interpolating functions
(i.e., they are used to interpolate the solution over a finite element).
Also, the special choice of the shape functions is directly related to the
special choice of an element type.

For example in one-dimension, variation within a 2-node element
cannot be uniquely described by a function with an order greater than
linear (2 parameter model), and variation within a 3-node element
cannot be uniquely described by a function with an order greater than
quadratic (3 parameter model), and so on.

The next step is to substitute our approximation for the continuous
variable into the governing differential equation. Thus, substituting eq.
(6) into eq. (4) leads to

∂

∂t

(

[

N1 N2

]

{

T1

T2

})

− κ
∂2

∂x2

(

[

N1 N2

]

{

T1

T2

})

− Q = R (8)

finite elements - course notes 12



Comp. Geodynamics February 25, 2019

where the residual “R” is a measure of the error introduced during
discretization. Note that the original partial differential equation is now
replaced by an equation in the discretized (nodal) variables T1 and
T2. Thus, we now have only one equation for two unknowns, which
obviously cannot be solved.

We can, however, re-formulate our problem into the problem of finding
values for T1 and T2 such that the residual gets minimized (ideally
R is zero as in the original equation). For this approach, we should
“somehow” generate a system of equations where the number of
equations equals the number of unknowns. In the finite element
method, this is achieved by requiring that the integral of the weighted
residual is zero on an element basis.

To perform this step practically, one must multiply (resp. “weight”)
the residual R in eq. (8) by a set of weighting functions (each in turn),
integrate over the element and equate to zero.
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Many methods (e.g., collocation, subdomain, least squares and
Galerkin) may be used to achieve this procedure, their main difference
being a suitable choice of appropriate weighting functions.

Here, we will only consider the Galerkin method: The weighting
functions are chosen to be identical to the shape functions Ni.

By carrying out the steps just described one obtains

∫ L

0

{

N1

N2

} ∂

∂t

(

[

N1 N2

]

{

T1

T2

})

dx −

∫ L

0

{

N1

N2

}

κ
∂2

∂x2

(

[

N1 N2

]

{

T1

T2

})

dx −

∫ L

0

{

N1

N2

}

Q dx =
{ 0

0

}

(9)

However, in our special example with linear shape functions, double
differentiation of these functions would cause them to vanish.
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This difficulty can be resolved by applying Green’s theorem (integration
by parts) to yield typically

∫

Ni

∂2Nj

∂x2
dx = −

∫

∂Ni

∂x

∂Nj

∂x
dx +

{

boundary
terms

}

(10)

where the boundary terms can usually be ignored.

Assuming that κ and Q are not functions of x (and that the Ni(x) do
not depend on t), we can rewrite the last expressions as

∫ L

0

[

N1N1 N1N2

N2N1 N2N2

]

dx
∂

∂t

{

T1

T2

}

+

κ

∫ L

0

[ ∂N1

∂x
∂N1

∂x
∂N1

∂x
∂N2

∂x
∂N2

∂x
∂N1

∂x
∂N2

∂x
∂N2

∂x

]

dx
{

T1

T2

}

− Q

∫ L

0

{

N1

N2

}

dx =
{0

0

}

(11)

Now we are arrived at two equations for the two unknowns T1 and T2,
as required.

finite elements - course notes 15



Comp. Geodynamics February 25, 2019

By substitution of the shape functions Ni(x) according to equation (7),
the three integrals can be evaluated, and equation set (11) yields

[ L
3

L
6

L
6

L
3

] ∂

∂t

{

T1

T2

}

+ κ
[ 1

L
− 1

L

− 1

L
1

L

] {

T1

T2

}

− Q
{ L

2
L
2

}

=
{

0
0

}

(12)

which can be simplified using matrix notation to

Â ·
∂

∂t
~T + B̂ · ~T = ~F (13)

where

Â =
[ L

3

L
6

L
6

L
3

]

, B̂ = κ
[ 1

L
− 1

L

− 1

L
1

L

]

, ~F = Q
{ L

2
L
2

}

, (14)

and
~T (t) =

{

T1(t)
T2(t)

}

. (15)
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The next step to perform is the discretization of the time derivative,
which is usually achieved with a finite difference approximation.

Assuming an implicit time discretization, we can rewrite eq. (13) as

Â ·
~T n+1 − ~T n

∆t
+ B̂ · ~T n+1 = ~F (16)

where ~T n+1 is the future temperature at the nodes (i.e., the unknowns)
and ~T n is the vector of old (known) temperatures. Rearranging terms,
we obtain

[ 1

∆t
Â + B̂

]

· ~T n+1 =
1

∆t
Â · ~T n + ~F (17)

or, more compactly,

K̂ · ~T n+1 = Ĉ · ~T n + ~F (18)

In equation (18), everything appearing on the right hand side combines
to form a (known) vector, where we have substituted
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Ĉ =
1

∆t
Â.

On the left hand side, matrix K̂ is referred to as the element stiffness
matrix, and ~T (t) is the unknown element vector.

Remember that so far we have only carried out the discretization of a
single element. In general, however, we want to obtain a solution for
the whole domain. We divide therefore the solution domain into many
elements in order to obtain an global solution.

Let us consider a small one-dimensional mesh, consisting of 4
elements (once you get the idea you can easily consider more
elements).

finite elements - course notes 18



Comp. Geodynamics February 25, 2019

Now, instead of having just 2 unknowns, we have 5 unknowns, related
to the five nodes in the (now global) mesh.

The generation of the global matrix equation is done by adding up
node-by-node the matrix equations derived for a single element (i.e.,
eq. (18)). Note that whereas node “1” contains only a contribution from
element 1, node “2” has contributions from both elements 1 and 2.

Performing this process (using the notation introduced above and
assuming that each element matrix is the same) leads to













K11 K12 0 0 0
K21 K22 + K11 K12 0 0
0 K21 K22 + K11 K12 0
0 0 K21 K22 + K11 K12

0 0 0 K21 K22













· ~T n+1 =
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











C11 C12 0 0 0
C21 C22 + C11 C12 0 0
0 C21 C22 + C11 C12 0
0 0 C21 C22 + C11 C12

0 0 0 C21 C22













· ~T n + Q























L/2
1
1
1

L/2























which in matrix notation becomes

K̂g · ~T n+1 = Ĉg · ~T n + ~Fg, (19)

where the subscript “g” indicates that matrices and all vectors refer now
to the entire “global” problem and not simply to a single element.
Note that both matrices K̂g and Ĉg are symmetrical, which is an
important (though not necessary) property when it comes to solving
the equation.
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Finally, note that most non-zero terms are clustered near the main
diagonal (called diagonal dominance) which also helps when the
equations are solved.

Equation system (19) can be rewritten in the form

K̂g · ~T n+1 = ~b (20)

which is the classical form of a linear algebraic equation system.

Here, the matrix K̂g is referred to as the stiffness (or coefficient)
matrix, ~b is referred to as the right hand side (or “load”) vector, and
~T n+1 is the unknown solution (or “reaction”) vector.
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The final step needed to solve the system is a choice of appropriate
boundary conditions.

There are two main possibilities, fixed temperature, fixed temperature
gradient, or some combination of both. Fixed temperature boundaries
are implemented by performing the following steps:

(1) zeroing the entries in the relevant equation

(2) placing a “1” on the diagonal entry of the stiffness matrix and

(3) setting the value at the correct position of the right hand side vector
equal to the desired value

Alternatively, if one wishes to implement zero-flux boundary conditions,
one does not have to do anything explicitly (i.e., it is the default
boundary condition created when one ignored the boundary terms;
non-zero-flux boundary conditions would be slightly more complex).
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We are now ready to compute the solution to the 1D heat flow problem:

(1) Define all physical (e.g., diffusivity, source term, length of spatial domain) and
numerical (e.g., number of elements and nodes) parameters

(2) Define the spatial coordinate x and the time domain for your wanted solution

(3) Within an element loop, define the element matrices Â and B̂ and the element
load vector ~F (see eqs. (13) and (14)). Use these to compute K̂ and Ĉ (eqs.
(17) and (18)). Sum these matrices node-by-node to form the global matrices K̂g

and Ĉg and the global vector ~Fg (see eq. (19)). Since the element properties do
not depend on time, these global matrices only need to be calculated once and
can be saved for later use.

(4) Within a time loop, perform the operations on the right hand side of equation (19)
(i.e., multiply Ĉg with the old temperature vector ~T n and then add the resulting
vector to ~Fg) to form the right-hand-side vector ~b

(5) Apply boundary conditions

(6) Solve equation (20) for the new temperature, and continue to the next time step
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