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Modeling Advection
Nearly all of the modeling of physical phenomena is based on the
simple statement that certain important physical properties must be
conserved.

1. Conservation of anything

Consider an arbitrary inertial frame in space of volume V enclosed by
a surface S, i.e.
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Here, dS is the vector normal to a small patch on the surface S. This
vector points outwards by convention.

If we now consider how any quantity Φ (in units of stuff per unit
volume) can change within this volume, the only way to change the
amount of Φ with time is to flux it through the boundary or create it
within the volume. If we let F be the flux of Φ in the absence of fluid
transport (e.g. heat conduction), Φ·v be the transport flux (stuff per unit
area per unit time) and H be a source or sink of Φ then the statement
of conservation of Φ for the volume V becomes

d

dt

∫

V

Φ dV = −

∫

S

F · dS −

∫

S

Φv · dS +

∫

V

HdV (1)

The negative signs in front of the surface integrals are present because
a positive outward flux corresponds to a negative rate of change of the
integral on the left side of eq. (1).
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This equation is always true, independent of the size of the blob and
even if the fields are not continuous; however, because of the integrals,
any information on the spatial structure of the fields on a scale smaller
than the “blob” size is lost (sorry to the mineralogists/petrologists !).

Given the existence of a suitable continuum length scale, we can now
rewrite eq. (1) as a local partial differential equation.
Because the property of interest is differentiable, we can replace the
surface integrals in eq. (1) using Gauss’ theorem

−

∫

S

F · dS −

∫

S

Φv · dS = −

∫

V

∇ · (F + Φv) dV (2)

Moreover, because the surface S and volume V are fixed in an inertial
frame, the time derivative of the summed properties is equal to the sum
of the local time derivatives or

d

dt

∫

V

Φ dV =

∫

V

∂Φ

∂t
dV (3)
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Substituting eqs. (2) and (3) into (1) yields

∫

V

[∂Φ

∂t
+ ∇ · (F + Φv) − H

]

dV = 0 (4)

Because V is of arbitrary shape and size, eq. (4) can only be satisfied
if the term in square brackets is zero everywhere,

therefore

∂Φ

∂t
+ ∇ · (F + Φv) = H (5)

This is the general form which all conservation laws take in continuum
mechanics.
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2. Conservation of mass and energy

Given eq. (5) for the conservation of anything, it is now
straightforward to consider conservation of the 3 most important
quantities, mass, energy and momentum (force balance).

Conservation of mass

To derive conservation of mass, we just substitute Φ = ρ (density is the
amount of mass per unit volume), F = 0 (mass flux can only change
due to transport) and H = 0 (mass cannot be created or destroyed)
into eq. (5) to get

∂ρ

∂t
+ ∇ · (ρv) = 0 (6)

This equation is often referred to as the continuity equation.
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Conservation of energy (heat)

For a single phase material, the amount of heat per unit volume is
Φ = ρcpT , where cp is the specific heat (energy per unit mass per
degree Kelvin) at constant pressure and T is the temperature.
The heat flux has two components due to conduction and transport. In
the absence of transport the heat flux is F = −k∇T where k is the
thermal conductivity. Note that heat flows opposite to ∇T , i.e., heat
flows from hot to cold. The transport flux is ρcpT · v.
Finally, unlike mass, heat can be created in a region due to terms like
radioactive decay or viscous dissipation and shear heating. We will just
lump all the source terms into H.
Thus the simplest conservation of heat equation reads

∂ρcpT

∂t
+ ∇ · (ρcpTv) = ∇ · k∇T + H (7)
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For constant cp and k, this equation can also be rewritten using eq. (6)
as

∂T

∂t
+ v · ∇T = κ∇2T + H (8)

where κ = k/ρcp is the thermal diffusivity with units m2s−1.

Note: terms that look like

D

Dt
=

∂

∂t
+ v · ∇ (9)

are known as the material derivative and can be shown to be the
change in time of a materials property as observed in a moving frame
of reference (material moves with velocity v).
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Example: Heat flow and the Peclet number

In the absence of any heat sources, and assuming constant material
properties, the simples 1D equation for heat flow is

∂T

∂t
+ W

∂T

∂z
= κ

∂2T

∂z2
(10)

This equation includes two processes, advection of heat at velocity
W , and diffusion of heat with thermal diffusivity κ.
As an example problem, this equation could be used to solve for the
temperature distribution directly beneath an upwelling mantle plume or
mantle ridge (see Figure 1).
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Figure 1: Corner flow beneath an ocean ridge. Layer depth is d,
upwelling rate at axis is W0
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While it may appear that that are at least two free parameters (W and
κ as well as some temperatures), there is in fact only one parameter
and it is independent on temperature.

To show this, we begin by replacing the dimensional variables with
dimensionless ones. The cholice of scaling values is a bit of an art.
Examination of Fig. 1.1 shows that for the case of an upwelling through
a thermal layer of depth d, which has constant temperatures T0 at z = 0
and T1 at z = d and has a characteristic velocity W0, the sensible
scaling is

z = d · z′

t = d/W0 · t
′

∂/∂z = 1/d · ∂/∂z′

W = W0 · W
′

T = T0 + (T1 − T0) · T
′ (11)

where the primes denotes dimensionless variables.
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Brute force substitution of eq. (11) into eq. (10) gives

∆TW0

d

[

∂T ′

∂t′
+ W ′∂T ′

∂z′

]

=
κ∆T

d2

∂2T ′

∂z′2
(12)

where ∆T = T1 − T0.

Multiplying both sides by d/(∆TW0) and dropping the primes yields
(we assume a constant advection velocity in 1D with ~v = W0~nz, i.e. W ′ = 1)

∂T

∂t
+

∂T

∂z
=

1

Pe
·
∂2T

∂z2
(13)

where
Pe =

W0d

κ
(14)

is the Peclet number which controls the relative strength of advection to diffusion.

If Pe is large, advection dominates and the last term is negligible1.
If Pe is small, diffusion dominates.

1except in narrow boundary layers
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However, there is only one parameter that controls all solutions. Figure 2 shows
shows the analytic steady state solution to eq. (13) with dimensionless boundary
conditions T (0) = 1, T (1) = 0 and a range of the Peclet number Pe.

Figure 2 (next slide):
Analytic solution to the simplest steady-state advection-diffusion problem. The
solution is T (z) = (ePe·z − ePe)/(1 − ePe). This problem is a good estimate
for the thermal structure direct on the axis. Note that the Peclet number controls the
width of the thermal boundary layers which are of order 1/Pe.
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Another, more physical way to derive the Peclet number is to consider the time it
takes each process to affect the entire layer. The time it takes to advect across the
layer at speed W0 is

tadv = d/W0

while the time it takes for heat to diffuse a distance d is

tdiff = d2/κ

.

Thus the Peclet number simply is the ratio of the diffusion time to the advection time
scale, i.e. Pe = tdiff/tadv.

This is a characteristic property of almost all dimensionless numbers that are
important for mantle dynamics. They are mostly simple ratios of time scales
generated by independent processes and reflecting the relative importance of their
corresponding driving forces (mechanisms).

advection - course notes 14



Comp. Geodynamics February 20, 2019

Earth Mantle Gulf Stream Your Bathtub

W0 10−9 m/s (3 cm/yr) 1 m/s 0.01 m/s
d 3000 km 100 km 1 m
ν 1018 m2/s 10−6 m2/s 10−6 m2/s
κ 10−6 m2/s 1.4 · 10−7 m2/s 1.4 · 10−7 m2/s

tadv (= d/W0)

tdiff (= d2/κ)

Pe (= W0d/κ)

Pr (= ν/κ)

Table 1: Some scales for three fluid problems

(to be completed !)
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Numerical Implementation

In the absence of thermal diffusion (κ = 0) and internal heating (H=0), the equation
for energy conservation, eq. (8), reads

∂T

∂t
+ v · ∇T = κ∇

2
T + H = 0 , (15)

that is, in 1-D we have
∂T

∂t
+ vz

∂T

∂z
= 0 . (16)

We will now evaluate some options on how to solve this equation with a finite
difference scheme on a fixed grid.

Even though the equation appears simple, it is quite tricky to solve it accurately,
more so than for the diffusion problem. This is particularly the case if there are large
gradients in the quantity that is to be advected.
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If not done carefully, one can easily end up with strong numerical artifacts such
as wiggles (oscillatory artifacts) and numerical diffusion (artificial smoothing of the
solution).

FTCS method

In 1-D, the simplest way to discretize eq. (21) is by employing a central difference
scheme in space, and go forward in time (another example of a forward-time, central
space, FTCS, scheme):

T n+1
i − T n

i

∆t
= −vz,i ·

T n
i+1 − T n

i−1

2∆z
, (17)

where vz,i is the vz velocity at location i.

As a exercise, we will consider an exponential pulse of temperature getting
advected along the z axis with constant velocity vz (see matlab script
advection ftcs template.m).
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Please download this file from the course homepage, fill in the questions marks
as necessary and try to answer the related questions.

• complete the FTCS method, run the file and see what happens
• change e.g. the sign of the velocity vz

• change the time step and grid spacing and compute the so-called
non-dimensional Courant number α = |vz|∆t/∆z

• When do unstable results occur?
Can you find a ∆t small enough to avoid blow-up?
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It turns out, that the FTCS method does not work at all !

In fact, it is a nice example of a scheme that looks logical on paper, but looks can
be deceiving. The FTCS method is unconditionally unstable, blows up for any ∆t, as
can be shown by von Neumann stability analysis.

The instability is related to the fact that this scheme produces negative diffusion,
which is numerically unstable.

advection - course notes 19



Comp. Geodynamics February 20, 2019

Lax method

The Lax approach consists of replacing the T n
i at the left-hand-side of eq. (22) with

(T n
i+1 + T n

i−1)/2.

The resulting equation is

T n+1
i − (T n

i+1 + T n
i−1)/2

∆t
= −vz,i ·

T n
i+1 − T n

i−1

2∆z
. (18)

• Program the Lax method by modifying the script of the last exercise
• Try different vz and ∆t settings and compute the Courant number
• Is the numerical scheme stable for all Courant numbers α?
• What is the physical meaning of α?

What happens for α = 1 and why?
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As you can see, the Lax method does not blow up, but does have a lot of numerical
diffusion for α 6= 1 (which is hard to attain for realistic problems, as vz will vary in
space and time).

In fact, the Lax criterion stabilized the discretized advection equation by adding some
artificial diffusion. So, it is an improvement of the situation – but it’s far from being
perfect (!) since you may now loose details of the solution purely due to numerical
diffusion.

As for the case of the implicit versus explicit solution of the diffusion equation,
you see that there are trade-offs between stability and accuracy.

The stability requirement

α =
|vz|∆t

∆z
≤ 1 (19)

is called the Courant criterion (see Figure).
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Courant condition for stability of a differencing scheme: The solution of a hyperbolic
problem at a point depends on information within some domain of depencency
to the past, shown here shaded. The differencing scheme has its own domain
of dependency determined by the choice of points on one time slice (shown as
connected solid dots) whose values are used in determining a new point (shown
connected by dashed lines). A differencing scheme is called Courant stable if the
differencing domain of dependency is larger than that of the PDE’s, as in (a).
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Streamline upwind scheme

A popular scheme is the so-called (streamline) upwind approach. Here, the spatial
finite difference scheme depends on the sign of the velocity:

The resulting equation is

T n+1
i − T n

i

∆t
= −vz,i · (T

n
i − T n

i−1)/∆z if vz,i > 0

= −vz,i · (T
n
i+1 − T

n
i )/∆z if vz,i < 0 (20)

Note that we have replaced central with forward or backward derivatives, depending
on the flow direction.

The idea is that the flux into the local cell at zi will only depend on the gradient
of temperature in the direction “upstream”, i.e. where the inflowing velocity is coming
from.
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The upwind scheme also suffers from numerical diffusion, and it is only first order
accurate in space.

For some applications, particularly if there’s also diffusion, it might just be good
enough because the simple trick of doing FD forward or backward is closer to the
underlying physics of transport than, say, FTCS. There are some mantle convection
codes that use streamline upwind schemes.

So far, we employed explicit discretizations. You’re probably wondering whether
implicit discretizations will save us again this time. Bad news: they are not well-suited
for this type of problem. Implicit schemes behave like parabolic partial differential
equations (e.g. the diffusion equation) in that a perturbation at node (i,n) will affect
the solution at all nodes at time level n+1.

With an advection type equation, disturbances travel at a finite speed (the speed
of the material displacement) and will not affect all nodes at time level n+1. So we
have to come up with something else.

advection - course notes 24


