Initial value problems for pdes

We start with the diffusion equation in 1+1 dimension:

ou O%u
ot~ Pae

We have already written down a discrete version of this.

Forward Time, Centred Space

u(n—l—l) . u(n)

D
) i D) oo, ()
At 2 (”' — 24+ “J'+1)

(1)

Stability analysis

von Neumann analysis (not rigorous)

Fourier transform in space: u(x) =", e u(k)
Each u(k) evolves independently in time

(at least for linear problems with constant coeffs)
This gives the eigenmode evolution

N =G =y = e (2)

To find amplification factor &, substitute (2) into finite difference equation

> 1 exponential growth, instability
Exk (<1 exponential damping, stability

=1 more detailed analysis needed

von Neumann stability: |{x] < 1Vk

Stability for FTCS

Inserting the eigenmode evolution (2) into the FTCS equation (1) gives

n+1
3 A; Sk _ a_D2§Z (eik(j—l)a _oelkia eik(j—l—l)a)

DA ADAt _ , k
Se=1+ zt(ﬂ“—2+d“>:1— Fin2 @
a

a2 2

Since this is always < 1 stability means that £, > —1

ADAt . 5 ka
sin® §§2.

22
‘Worst case’: sin2(ka/2) =
At 1
B

<
— 2D

Stability condition:

An example

The MatLab files ftcs.m, gaussbc.m and ftcs_driver.m solve the
diffusion equation with the initial distribution

uo(x) = u(x, tp) = e /4D 5 <y <5 tg=0.1,

and boundary conditions

L 2
u(+xo, t) = \/?Oe_XOMDt, x0=D5.

The grid spacing in the x direction has been set to a = 0.05, and the
diffusion constant D = 1.

ftcs driver(dt,t) plots the solution for time step dt at time(s) t.

Run this with dt=0.0012 and see what you get.
Then run with dt=0.0013 and see what happens.

FTCS in 2+1 dimension

Our Ansatz is now
(n) _ uoE ek Bx giky 1By

u;
For Ax = Ay = a the FTCS scheme is
(n+1) _ (n)
. (n)

1 il n n n n
J At : :az<()/+ ()1+J(+)1/+ J/+1_4UJ(/)>

Inserting (3) gives

DAt(—lka_|_e 1ka+e/ka+e/ka_4)

k=14+—
a
1 4DAt<sn2ka+sn ka>
= | |
a2 2 2

At 1
el < 1Vk = — < =

A pain in the neck

We do not like the stability condition!
@ We want to model features at large scales A > a
Typical diffusion time is 7 ~ \?/D
— need n = z; ~ ;‘—j time steps
@ We want to improve accuracy by reducing a

But if a — a/2 then At — At/4
— 8 times as much cpu time!

Can we improve on this?

Second order time derivative?
FTCS is first-order accurate in time, second order in space

What about using second-order differencing in time?

Centred Time Centred Space

(n+1) (n—1)
uj uw— D (u(") _ oy u(n))
2At a2 \ /-1 J J+1
von Neumann
1 8DAt . , ka
Ek — €_k = sin —
4DAt k 4DAt ka\ 2
— g =200 Ry 1 (20000)
a2 2 a2 2

The (—) mode is unstable for all k and At!
CTCS is unconditionally unstable

Implicit schemes: BTCS

- 2
Explicit scheme: % evaluated at t

Implicit scheme: evaluate at t + At

Backward Time, Centred Space

ul

Jn—i—l) B uJ(n) u(n—l—l) . 2uJ(n—I—l) 4 (n+1)

i1 Yit1
At EL

2AtN (nt1) At/ (nt1) . (n+1) (n)
:>(1+7)uj —?(uj_l +u):uj

J

We get a sparse matrix equation for 1),

von Neumann analysis

1 _ _
gA_tzé(e/ka_z_'_e—lka) :>§:

1

AAt - 2 ka
1+?S|n 5

¢ < 1 forall k, At: BTCS is unconditionally stable

Crank—Nicolson

BTCS is stable, but only first-order accurate in time.
How can we get second-order accuracy?

Average FTCS and BTCS!
(the same as taking a centred time derivative around t + At/2)

") L 1 (n+1) (+1) (+1) () ())
j i n n n n " "
At ~ g2 [e T J+ U T2]

FTCS BTCS

Crank-Nicolson

<1+%) ujgn+1) ZA_ag((n+1) | J(rlrl)> _ <1_§2t> J(n)+2Aa§< (n)1+“1(i)1

Stability of Crank-Nicolson

von Neumann analysis

—4At k —4At k
ﬁ(l — sin? _a) =1 sin? «

232 2 232 2
— %t sin? % 1-p

= |

:1+%sin27"” 1+ b2

The modulus of the numerator is always smaller than the denominator

Crank-Nicolson is unconditionally stable

