Initial value problems for pdes

We start with the diffusion equation in 1+1 dimension:
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We have already written down a discrete version of this.
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Stability analysis

von Neumann analysis (not rigorous)

Fourier transform in space: u(x) =", e u(k)
Each u(k) evolves independently in time

(at least for linear problems with constant coeffs)
This gives the eigenmode evolution

N =G =y = e (2)

To find amplification factor &, substitute (2) into finite difference equation

> 1 exponential growth, instability
Exk (<1 exponential damping, stability

=1 more detailed analysis needed

von Neumann stability: |{x] < 1Vk




Stability for FTCS

Inserting the eigenmode evolution (2) into the FTCS equation (1) gives
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Since this is always < 1 stability means that £, > —1
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Stability condition:




An example

The MatLab files ftcs.m, gaussbc.m and ftcs_driver.m solve the
diffusion equation with the initial distribution

uo(x) = u(x, tp) = e /4D 5 <y <5 tg=0.1,

and boundary conditions

L 2
u(+xo, t) = \/?Oe_XOMDt, x0=D5.

The grid spacing in the x direction has been set to a = 0.05, and the
diffusion constant D = 1.

ftcs driver(dt,t) plots the solution for time step dt at time(s) t.

Run this with dt=0.0012 and see what you get.
Then run with dt=0.0013 and see what happens.



FTCS in 2+1 dimension

Our Ansatz is now
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For Ax = Ay = a the FTCS scheme is
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Inserting (3) gives
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A pain in the neck

We do not like the stability condition!
@ We want to model features at large scales A > a
Typical diffusion time is 7 ~ \?/D
— need n = z; ~ ;‘—j time steps
@ We want to improve accuracy by reducing a

But if a — a/2 then At — At/4
— 8 times as much cpu time!

Can we improve on this?




Second order time derivative?
FTCS is first-order accurate in time, second order in space

What about using second-order differencing in time?

Centred Time Centred Space

(n+1)  (n—1)
uj uw— D (u(") _ oy u(n))
2At a2 \ /-1 J J+1
von Neumann
1 8DAt . , ka
Ek — €_k = sin —
4DAt k 4DAt ka\ 2
— g =200 Ry 1 (20000 )
a2 2 a2 2

The (—) mode is unstable for all k and At!
CTCS is unconditionally unstable




Implicit schemes: BTCS

- 2
Explicit scheme: % evaluated at t

Implicit scheme: evaluate at t + At

Backward Time, Centred Space
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We get a sparse matrix equation for 1),

von Neumann analysis
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¢ < 1 forall k, At: BTCS is unconditionally stable




Crank—Nicolson

BTCS is stable, but only first-order accurate in time.
How can we get second-order accuracy?

Average FTCS and BTCS!
(the same as taking a centred time derivative around t + At/2)
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Stability of Crank-Nicolson

von Neumann analysis
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The modulus of the numerator is always smaller than the denominator

Crank-Nicolson is unconditionally stable



