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Figure 6-35 Dimensionless mean water temperature in the aquifer as a
function of position for three nondimensional flow rates. The dashed line is
the dimensionless aquifer wall temperature.

6,=1/2 corresponds to 7, =T, + 1BR’, and T, at
¢=m/2is Ty + BR’ (T, < BR’).

In order to better understand why there is a
maximum exit temperature, we show the mean
temperature of the water in the aquifer as a func-
tion of position in Figure 6-35 for three flow rates.
The dimensionless wall or rock temperature 6,,,
T,-T,

0W 57 BRI

(6-271)

is also given in the figure. For a low flow rate,
RPe/R’=1, for example, the water temperature
follows the wall temperature because of the large
heat transfer, and the exit temperature is low. For
very slow flow, RPe /R’ — 0, the water temperature
equals the wall temperature 8 = 6, =sin ¢, the exit
temperature equals the entrance temperature, and
there is no hot spring. For a high flow rate,
RPe/R’'=15, for example, there is very little heat
transfer, and the water does not heat up. In the
limit RPe/R’— oo the water temperature every-
where in the aquifer equals the entrance tempera-
ture, and there is no hot spring. The case of
maximum exit temperature, RPe /R’=5 and 6, =
0.52 is also shown in Figure 6-35.

Although the analysis given here has been greatly
simplified, the results are applicable to the more

general problem in which the temperature distri-
bution in the rock through which the aquifer passes
must also be determined. This requires a solution
of Laplace’s equation. Also, the transition to
turbulence must be considered. The more
complete solutions require numerical methods.
However, the results show that the maximum tem-
perature that can be expected from a hot spring is
about one-half the temperature obtained by ex-
trapolating the regional geothermal gradient to the
base of the aquifer, similar to the result obtained
here.

Problem 6-25 Verify by direct substitution that
Equation (6-269) is the solution of Equation
(6-268).

Problem 6-26 The results of this section were
based on the assumption of a laminar heat
transfer coefficient for the aquifer flow. Since
this requires Re <2200, what limitation is
placed on the Péclet number?

6-17 THERMAL CONVECTION

As discussed in Section 1-13, plate tectonics is a
consequence of thermal convection in the mantle
driven largely by radiogenic heat sources and the



cooling of the earth. When a fluid is heated, its
density generally decreases because of thermal ex-
pansion. A fluid layer that is heated from below or
from within and cooled from above has dense cool
fluid near the upper boundary and hot light fluid
at depth. This situation is gravitationally unstable,
and the cool fluid tends to sink and the hot fluid
tends to rise. This is thermal convection. The
phenomenon is illustrated in Figure 1-59.

Appropriate forms of the continuity, force
balance, and temperature equations for two-
dimensional flow are required for a quantitative
study of thermal convection. Density variations
caused by thermal expansion lead to the buoyancy
forces that drive thermal convection. Thus it is
essential to account for density variations in the
gravitational body force term of the conservation
of momentum or force balance equation. In all
other respects, however, the density variations are
sufficiently small so that they can be neglected.
This is known as the Boussinesq approximation. It
allows us to use the incompressible conservation of
fluid equation (6-53). The force balance equations
(6-64) and (6-65) are also applicable. However, to
account for the buoyancy forces, we must allow
for small density variations in the vertical force
balance, Equation (6-65), by letting

p=potp (6-272)

where p, is a reference density and p’< p,. Equa-
tion (6-65) can then be written

ap
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(6-273)

We can eliminate the hydrostatic pressure corre-
sponding to the reference density by introducing

P=p—pogy (6-274)

as in Equation (6-66). The horizontal and vertical
equations of motion, Equations (6-64) and (6-273),
become

2 2
i (u+a_u) (6-275)
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Density variations caused by temperature
changes are given by Equation (4-172)

p'=—pa(T—T,) (6-277)

where a, is the volumetric coefficient of thermal
expansion and 7; is the reference temperature
corresponding to the reference density p,. Sub-
stitution of Equation (6-277) into Eguation (6-276)
gives

0% | 3%
+M(a;+w) — 8poe,(T—Ty)

(6-278)

The last term in Equation (6-278) is the buoyancy
force per unit volume. The gravitational buoyancy
term depends on temperature. Thus the velocity
field cannot be determined without simultaneously
solving for the temperature field. Therefore we
require the heat equation that governs the varia-
tion of temperature.

The energy balance must take account of heat
transport by both conduction and convection.
Consider the small two-dimensional element shown
in Figure 6-36. Since the thermal energy content of
the fluid is pcT per unit volume, an amount of
heat pcTudy is transported across the right side
of the element by the velocity component « in the
x direction. This is an energy flow per unit time
and per unit depth or distance in the dimension
perpendicular to the figure. If pcTu is the energy
flux at x, then pcTu+9/9x(pcTu) &x is the en-
ergy flow rate per unit area at x + dx. The net
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Figure 6-36 Heat transport across the surfaces of
an infinitesimal rectangular element by convection.
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energy advected out of the elemental volume per
unit time and per unit depth due to flow in the x
direction is thus

[{chu + %(chu)&x} = chu] Sy

0
= (pcTu)dxdy
(6-279)

The same analysis applied in the y direction gives
[(chv + % {chv}Sy) - chv] dx

_9a
05 (pcTv)dxdy
(6-280)

for the net rate at which heat is advected out of
the element by flow in the y direction per unit
depth. Thus, the net rate of heat advection out of
the element by flow in both directions is

a ad
[a(chu)-!- @(chv)] 8x8y

per unit depth. We have already derived the ex-
pression for the net rate at which heat is con-
ducted out of the element, per unit depth, in
Equation (4-49); it is

2 2
_k(a LT

) dxdy
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Conservation of energy states that the combined
transport of energy out of the elemental volume by
conduction and convection must be balanced by
the change in the energy content of the element.
The thermal energy of the fluid is pcT per unit
volume. Thus, this quantity changes at the rate

a
E(ch)8x8y

per unit dei)th of fluid. By combining the effects
of conduction, convection and thermal inertia, we
obtain

0 0T | 3°T
—(ch)—k(—+—)

at ax* 3y

+a(pcuT)+ @(pch)=0 (6-281)

By treating p and c¢ as constants and noting that

aT aT du dv
2 (uT)+ —(vT)—u—+ o3 +T($+a—-)
oT aT
ua+v$ (6-282)

(the last step following as a consequence of the
continuity equation) and k =k /pc, we finally
arrive at the heat equation for two-dimensional

flows
2
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(6-283)

In deriving Equation (6-283), we have neglected
some factors which contribute to a general energy
balance but which are negligible in our present
application. These include frictional heating in the
fluid associated with the resistance to flow and
compressional heating associated with the work
done by pressure forces in moving the fluid. We
have already derived and used simplified forms of
this equation in Section 4-19.

6-18 LINEAR STABILITY ANALYSIS

FOR THE ONSET OF THERMAL
CONVECTION IN A LAYER OF FLUID HEATED
FROM BELOW

The layer of fluid illustrated in Figure 6-37 is
heated from below; that is, its upper surface y =
—b/2 is maintained at the relatively cold refer-
ence temperature 7; and its lower boundary y =
b/2 is kept at the relatively hot temperature 7'(7,
>T,). We assume that there are no heat sources in
the fluid. Buoyancy forces tend to drive convec-
tion in the fluid layer. Fluid near the heated lower
boundary becomes hotter and lighter than the
overlying fluid and tends to rise. Similarly, fluid
near the colder, upper boundary is denser than the
fluid below and tends to sink. However, the mo-
tion does not take place for small temperature
differences across the layer because the viscous
resistance of the medium to flow must be over-
come. We use the equations of the preceding sec-
tion to determine the conditions, for example, the




|

\ =
y
Figure 6-37 Two-dimensional cellular convection

in a fluid layer heated from below.

minimum temperature difference, required for
convection to occur.

In the absence of convection, that is, for T, — T,
sufficiently small, the fluid is stationary (u = v =0),
and we can assume that a steady (9/9¢ =0) con-
ductive state with 0/0x =0 exists. The energy
equation (6-283) then simplifies to

2

" A -

dy?
where the subscript ¢ indicates that this is the
conduction solution. The solution of Equation
(6-284) that satisfies the boundary conditions 7' =
T, at y=—b/2 and T=T, at y=+b/2 is the
linear temperature profile

(6-284)

T T1+72) (TI_TO)

=ty : (6-285)

If one imagines gradually increasing the tempera-
ture difference across the layer (7} — T;), the sta-
tionary conductive state will persist until 7|, — T
reaches a critical value at which even the slightest
further increase in temperature difference will
cause the layer to become unstable and convection
to occur. Thus, at the onset of convection the fluid
temperature is nearly the conduction temperature
profile and the temperature difference 77,

(T1+T0) (Tl_%)
2 b

T'=T—T,=T—
(6-286)

is arbitrarily small. The convective velocities u’, v’
are similarly infinitesimal when motion first takes
place.
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The form of the energy equation that pertains to
the onset of convection can be written in terms of
T’ by solving Equation (6-286) for T and substitut-
ing into Equation (6-283). One gets

aT’ ’ aT’ ’ aT’ v,(Tl i TE))
TR I TR
27 27
:K(a_T+a_T
&
(6-287)

Since 77, u’, v’ are small quantities, the nonlinear
terms u'0T’ /0x and v'd7” /9y on the left side of
Equation (6-287) are much smaller than the re-
maining linear terms in the equation. Thus they
can be neglected and Equation (6-287) can be
written as

T’ n v’ 92T

at ;(Tl_%)z"( axz 3

32T )
8y2
(6-288)

The neglect of the nonlinear terms, the terms
involving products of the small quantities u’, v/,
and 7", is a standard mathematical approach to
problems of stability. Our analysis for the condi-
tions in the fluid layer at the onset of convection is
known as a linearized stability analysis. 1t is a valid
approach for the study of the onset of convection
when the motions and the thermal disturbance are
infinitesimal.

To summarize, the equations for the small per-
turbations of temperature 7", velocity ', v/, and
pressure P’ when the fluid layer becomes unstable
are

du’  0v _

3+ 3y =0 (6-289)
TN PN [ B (6-290)
~ B Ul st 0y?
. ' 0%’ | 9%’
(6-291)
T v _ (T | 8T
W+_l)—(Tl TO)_K(§+ ayz )
(6-292)
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From the second term on the right side of the
vertical force balance equation (6-291), it is seen
that we have taken the buoyancy force at any
point in the layer to depend only on the departure
of the fluid temperature from the basic conduction
temperature at the point. The conduction temper-
ature profile of the stationary state is the reference
temperature profile against which buoyancy forces
are determined.

Equations (6-289) to (6-292) are solved subject
to the following boundary conditions. We assume
that the surfaces y==*5b/2 are isothermal and
that no flow occurs across them; that is,

b

T'=v'=0ony= *5 (6-293)

If the boundaries of the layer are solid surfaces,

u'=0 onyZi% (6-294)
This is the no-slip condition requiring that there
be no relative motion between a viscous fluid and
a bounding solid surface at the solid-fluid inter-
face. If the surfaces y ==5/2 are free surfaces,
that is, if there is nothing at y == b /2 to exert a
shear stress on the fluid, ¥’ need not vanish on the
boundaries. Instead, the shear stress 7,, must be

zero on y = = b /2. From Equation (6-58) this re-
quires

0l . 08t Tt

3 + = =0ony== 5 (6-295)

Conditions (6-295) can be simplified even further
because v'=0 on y ==+ b/2 for any x and conse-
quently v’ /0x =0 on y = = b /2. The free surface
boundary conditions are therefore

(6-296)

A simple analytic solution can be obtained for the
linearized stability problem if the free surface con-
ditions (6-296) are adopted.

We once again introduce the stream function
defined in Equations (6-69) and (6-70). Thus the
conservation equation (6-289) is automatically
satisfied, and Equations (6-290) to (6-292) can be

written
’ 3.1,7 31,7
gt Bt —p.( i ) (6-297)
dx 0x%0y 9dy3
ay 85 . ax3  9yZox
(6-298)
0 Lieo ool VR . §E00
at +b(Tl T(')) ax _K( axz + ayz )
(6-299)

Eliminating the pressure from Equations (6-297)
and (6-298) yields

rs 84'4/ a4¢/ 844/ aT/
p= x4 +28x28y2 i ay* Po8% 55
(6-300)

The problem has now been reduced to the solution
of two simultaneous partial differential equations
(6-299) and (6-300) for the two variables ¢’ and
.

Because these equations are linear equations
with constant coefficients, we can solve them by
the method of separation of variables. The
boundary conditions (6-293) and (6-296) are auto-
matically satisfied by solutions of the form

2ax
A

Y’ =y{cos (7;))) ) sin( )e"‘" (6-301)

27x

A

T’ =T;cos (7;)}) ) cos ( ) e (6-302)
The velocity and temperature perturbations
described by these equations are horizontally peri-
odic disturbances with wavelength A and maxi-
mum amplitudes ¢; and 77. The value of
o’ determines whether or not the disturbances will
grow in time. For o’ positive, the disturbances will
amplify, and the heated layer is convectively un-
stable. For a’ negative, the disturbances will decay
in time, and the layer is stable against convection.
We can determine «’ by substituting Equations
(6-301) and (6-302) into Equations (6-299) and

BN—— |




(6-300). We find

, . km?r | k4wt (L —-To ,
[ 5 -
(6-303)
472 7%\’ 1 27 "
M(7+;;) Yo =~ Po8%To
(6-304)

The disturbance amplitudes y; and 7§ can be
eliminated from these equations by division, yield-
ing an equation that can be solved for a’. The
growth rate o' is found to be

472b?
L ( o8, (T, — T) ) A2
2 2
b o ( 472b? —}-772)
)\2
442p?
= ('rr2 ‘3 v ) (6-305)

The dimensionless growth rate a’b?/k is seen to
depend on only two quantities, 27b /A, a dimen-
sionless wave number, and a dimensionless combi-
nation of parameters known as the Rayleigh
number Ra

- pOgaU(Tl i Tb)b3
LK

In terms of the Rayleigh number we can write

Equation (6-305) as

Ra (6-306)

472p> , , 4n2p?)’
st _(" T )
K BT 259\ 2
(7;-2+ 47°b )
}\2

(6-307)

The growth rate is positive and there is instability
if

(6-308)
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The growth rate is negative and there is stability if
Ra is less than the right side of Equation (6-308).
Convection just sets in when a’=0, which occurs
when

The critical value of the Rayleigh number Ra,,
marks the onset of convection. If Ra<Ra,,, dis-
turbances will decay with time; if Ra> Ra,_,, per-
turbations will grow exponentially with time.

According to Equation (6-309), the critical
Rayleigh number is a function of the wavelength
of the disturbance. Figure 6-38 shows how Ra_,
depends on 27b/A. If the Rayleigh number and
disturbance wavelength are such that the point lies
above the curve, the perturbation of wavelength A
is unstable; if the point lies below the curve,
convection cannot occur with disturbances of
wavelength A. For example, if Ra=2000, all dis-
turbances with 0.8 <527b /A <5.4 are convectively
unstable. However, convection cannot occur for
27b/A <0.8 and 27b /A =5.4. Figure 6-38 shows
that there is a minimum value of Ra,,. If Ra lies
below the minimum value all disturbances decay,
the layer is stable, and convection cannot occur.

The value of 27b/A at which Ra_, is a mini-
mum can be obtained by setting the derivative of
the right side of Equation (6-309) with respect to
27b /A equal to zero. One obtains

cr?

ORa, |4n2? [ ,  47%?)’ (277b)
(277b)_[ v 3(7r + 2 2 X
R,

4m2p*\° (27b \ |( 4w%b* |2
= 2 —
(w + ¥ ) 2( Y )‘( Y ) =0

(6-310)

or

L L (6-311)
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Figure 6-38 Critical Rayleigh number Ra,_, for the onset of convection in a
layer heated from below with stress-free boundaries as a function of dimen-

sionless wave number 27b/A.

The value of the wavelength corresponding to the
smallest value of the critical Rayleigh number is

A=2/2b (6-312)

Substitution of this value for the wavelength back
into Equation (6-309) gives the minimum critical
Rayleigh number
2774
3 b 657.5
The requirement that Ra exceed Ra,, for con-
vection to occur can be restated in a number of
more physical ways. One can think of the tempera-
ture difference across the layer as having to exceed
a certain minimum value or the viscosity of the
fluid as having to lie below a critical value before
convection sets in. If Ra is increased from 0, for

mir(Ra,, )= (6-313)

example, by increasing T, —T;, other quantities
remaining fixed, convection sets in when Ra
reaches 657.5 (for heating from below with stress-
free boundaries), and the aspect ratio of each
convection cell is y2, as shown in Figure 6-37. The
minimum value of Ra,_, and the disturbance wave-
length for which Ra_, takes the minimum value
must be determined numerically for no-slip veloc-
ity boundary conditions. For that case min Ra,, =
1707.8 and A =2.016b.

The linear stability analysis for the onset of
convection can also be carried out for a fluid layer
heated uniformly from within and cooled from
above. The lower boundary is assumed to be in-
sulating; that is, no heat flows across the boundary.
Once again the fluid near the upper boundary is
cooler and more dense than the fluid beneath.
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Therefore buoyancy forces can drive fluid motion
provided they are strong enough to overcome the
viscous resistance. This type of instability is di-
rectly applicable to the earth’s mantle, since the
interior of the earth is heated by the decay of the
radioactive elements and the near-surface rocks
are cooled by heat conduction to the surface.
These near-surface rocks are cooler and more dense
than the hot mantle rocks at depth. The ap-
propriate Rayleigh number for a fluid layer heated
from within is

a,pogHb®

Ra= ek

(6-314)
where H is the rate of internal heat generation per
unit mass. For no-slip velocity boundary condi-
tions, the minimum critical Rayleigh number is
2772, and the associated value of 27b/A is 2.63;
for free-slip conditions min Ra, =867.8, and the
associated value of 27b /A is 1.79.

We can estimate the value of this Rayleigh
number for the mantle of the earth. Based on the
postglacial rebound studies we take p =10?' Pa s.
For the rock properties we take k=4 W m™!
K™ Lk=1mm?s™!, and a, =3X 1073 °K~!. We
assume g =10 m s~ and an average density p, =
4000 kg m~3. Based on our discussion of the
distribution of heat sources in the mantle (see
Chapter 4) we take H=9X10"'2 W kg~ . If con-
vection is restricted to the upper mantle, it is
reasonable to take b =700 km. We find that Ra =
2X 108, If we apply the same values to the entire
mantle and take b =2880 km, we find that Ra =2
X 10°. In either case the calculated value for the
Rayleigh number is much greater than the mini-
mum critical value. It was essentially this calcula-
tion that led Arthur Holmes to propose in 1931
that thermal convection in the mantle was respon-
sible for driving continental drift.

Problem 6-27 Estimate the values of the
Rayleigh numbers for the mantles of Mercury,
Venus, Mars, and the Moon. Assume heat is
generated internally at the same rate it is pro-
duced in the earth. Use the same values for p,
k, k, and «, as used above for the earth’s
mantle. Obtain appropriate values of p,, g, and
b from the discussion of Chapter 1.

Problem 6-28 Calculate the exact minimum
and maximum values of the wavelength for
disturbances that are convectively unstable at
Ra=2000. Consider a fluid layer heated from
below with free-slip boundary conditions.

Problem 6-29 Formulate the linear stability
problem for the onset of convection in a layer
of fluid heated from withins Assume that the
boundaries are stress-free. Take the upper
boundary to be isothermal and the lower
boundary to be insulating. Carry the formula-
tion to the point where the solution to the
problem depends only on the integration of a
single ordinary differential equation for the
stream function subject to appropriate
boundary conditions.

6-19 BOUNDARY LAYER THEORY FOR
FINITE-AMPLITUDE THERMAL CONVECTION

The linear stability theory given in the previous
section determines whether or not thermal convec-
tion occurs. However, it is not useful in determin-
ing the structure of convection when the Rayleigh
number exceeds the critical value. Because it is
linear, the stability analysis cannot predict the
magnitude of finite-amplitude convective flows. In
order to do this, it is necessary to solve the full
nonlinear equations.

For large values of the Rayleigh number a
boundary layer analysis can be used to determine
the structure of the convection cells. Again we
consider a fluid layer of thickness b heated from
below. The upper boundary is maintained at a
temperature 7; and the lower boundary at a tem-
perature 7. The boundary layer structure and coor-
dinate system are illustrated in Figure 6-39. The
flow is divided into cellular two-dimensional rolls
of width A /2; alternate rolls rotate in opposite
directions. The entire flow field is highly viscous.
On the cold upper boundary a thin thermal
boundary layer forms. When the two cold
boundary layers from adjacent cells meet, they
separate from the boundary and form a cold de-
scending thermal plume. Similarly, a hot thermal
boundary layer forms on the lower boundary of



