Lecture 8. Physics of
Earthquakes
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Some basic facts and questions

Recent great earthquakes in Chili (2010, Mw=8.8)
and in Japan (2011, Mw=9.0)

Megathrust earthquakes and structure of the
upper plate

Cross-scale dynamic models



Some basic facts

The cause of larger earthquakes is the plate
tectonics and most of them happen at plate
boundaries

About 80% of relative plate motion on
continental boundaries is accommodated In
rapid earthquakes

With few exceptions, earthquakes do not
generally occur at regular intervals in time or
space.



Some basic facts

The shear strain change associated with large
earthquakes (i.e. coseismic strain drop) is of the order of
10— 10“. This corresponds to a change in shear stress
(I.e. static stress drop) of about 1-10 MPa.

The repeat times of major earthquakes at a given place
are about 100-1000 years on plate boundaries, and
1000—10 000 years within plates.

The rupture velocity for large earthquakes is typically
75-95% of the S-wave velocity



Some basic facts

Stress Change and Earthquake Sequence
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Some basic facts

Definitions and scaling

Seismic moment: Mgy = G-D-S, G-shear modulus, D-average
displacement, S-rupture area

I
Average stressdrop Ao, = 3 f AogdS.
O Js

Aoy =~ C-G-D /L, L-characteristic rupture length L= S1/2

Aog ~ C-M,-S372 or
My= Ao -S32; D=SY? Ao IG

Moment magnitude: M,, = 2/3 log,,(M,)-6.07
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Some basic facts

M, 107N m
Kanamori and Brodsky, 2004
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That means

Aoy = const

Mean value of Aoy
IS about 3 MPa

Moz &—C}_q 83/2 ’

D= S12 Ag, IG



Some basic facts

The magnitude—frequency relationship (the
Gutenberg—Richter relation)

10° l l l .
| Kanamori and Brodsky, 2004
([0 F— " S A S S -
L T s . A ——
§ 102 O S R |
=
L R . AEE
100 Lo N i
10 | | i | |
3 4 5 6 7 8 9

Magnitude, M

log N(M) =a — bM, b is about 1



AT, degree

Thermal effect of Eq.
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Ao,=10 MPa, w=1 cm
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AT, degree

Thermal effect of Eq.
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Some basic questions

Why some plate boundaries glide past each
other smoothly, while others are punctuated
by catastrophic failures?

Why do some earthquakes stop after only a
few hundred meters while others continue
rupturing for a thousand kilometers?

How do nearby earthquakes interact?
Why are earthguakes sometimes triggered

by other large earthquakes thousands of
kilometers away?



Great Earthquakes challenges

ACCUMULATING EARTHQUAKES
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Figure 1. Cumulative seismic moment versus time
Modified from [Kerr, 2011]

Why the greatest earthquakes occur in the weakest
zones? Do they indeed cluster?
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Subduction zone earthguakes
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Coupling paradox

Is the idea about low mechanical coupling at
subduction zones consistent with the occurrence
there great earthquakes?

Great earthquakes may well happen within the
very weak fault zones (subduction channels) with
static friction about 0.01-0.05 due to the friction
drop of about 0.005-0.01.

What makes earthquake great is not large stress
drop, but rupturing at large area (homogeneous
channel structure, no barriers).



Valdivia earthquake
Slip distribution

(1960)

[
0
M.S
8 @
n1
5]
5]




GPS station

@0

73W 71°W

75°W

69° W

73*W 7T1°W

75°W

Locking rate

apnieT

T
n = m‘
o,,

c CQ.\

I nilegd<

Bas) o
= .

Longitude

Moreno et al., 2010



Locaticn near the east coast of Honshu, Japan
Timz March 11 2011 05:46:23




Japan, 2011, Inverted Slip, m
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Locking of plates

Slip, max: 36m
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Perspectives: Cross-scale
dynamic models



Elastic deformation is included in our geological-
time-scale (mln years) Andes model

Full set of equations

EE_QDT v, ~0 mass
K Dt Dt 0ox
8P 0T, + oy pD_V momentum
(’Bxi 8x Dt
DT o0 ,.0T .
PC—=—(A—)+7,6, + pA energy
Dt ox = ox
1 v, oV, 1 Dz, 1

& == (—+ L) = + Tij
2 Ox; OX 2G Dt 277 ¢
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Frictional instabilities governed by static-kinetic friction

The static-kinetic (or slip-
weakening) friction:
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»

Shear Stress (MPa)
s
&S
w

s,
&
)

442
i

T
T4111706¢ch.8

1] 1

1
-—— WO ——
1 1

4.1 I i 1 !
0.000 0.001 0.002 0.003 0.004 0.005
D

Da

Slip Displacement (mm)

Ohnaka (2003)

»

»

A

stress

Constitutive law

static friction

kinetic friction

v

Lc slip

Stress

Slip

#
# .
.
s .
o -
Time



Frictional instabilities governed by rate- and state-dependent friction

Dieterich-Ruina friction:

T ) V N
—=u=u +aln| — |+bIn| —
o, V D

and

a0 _, N
dt D,

*

At steady state:

V
=u +(a-b)In| —
p=u +(@-h) Y

were.

* V and 0 are sliding speed and contact state, respectively.
* a, b and o are non-dimensional empirical parameters.

* D, is a characteristic sliding distance.

* The * stands for a reference value.



How b-a changes with depth ?
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The depth dependence of b-a may explain the seismicity depth distribution
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Subduction zone earthquakes

Seismogenic zone
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Subduction zone earthquakes

Seismogenic zone

Newton fluid
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Subduction zone earthquakes

Seismogenic zone

1. Earthquake: minute

2. Aftertslip (fault control) hours-1 year, V
=1/t

3. Visco-elastic relaxation (wedge control)
year-decades

Mantle Wedge



Our aim was to develop the thermo-mechanical model able to:

* Replicate long-term (108yr) evolution of subduction zone
» Generate earthquakes as spontaneous mechanical instabilities

* Replicate all stages of seismic cycle and multiple cycles in time
scale range from minute to 10%yr



Our aim was to develop the thermo-mechanical model able to:

Replicate long-term (10%yr) evolution of subduction zone

Generate earthquakes as spontaneous mechanical instabilities

Replicate all stages of seismic cycle and multiple cycles in time
scale range from minute to 10%yr

And all that with mineral-physics-based rheology



Technique FEM code SLIM3D

(Popov and Sobolev
PEPI, 2008)

Balance equations
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Three creep processes
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Modification of viscous rheology

Steady power-law dislocation creep
. n
E,=B-7"exp(—H,/RT)

Transient rheology (motivated by Karato (1998))

é=é,(I+(B-Dexp(—eic /")

where:

. Ess Is power-law steady state creep strain rate (lab
dagé}ﬂ
« g« s elastic strain induced by earthquake

. IB IS viscous creep strain after the earthquake

. iS a constant about 10



Modification of brittle rheology

Rate and state friction law

Dieterich-Ruina friction:

o _ - *+aM(Vj+bh1Q!i
H=A V' D

oo,

and
d@_l N

]
dt D,
were:
* V and 0 are sliding speed and contact state, respectively.
* a, b and a are non-dimensional empirical parameters.
* D, is a characteristic sliding distance.
» The * stands for a reference value.
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Model setup
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about 40 sec and back
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Earthquakes

Adaptive time-step algorithm: from 5 yr step gradually multiplying by %z to
about 40 sec and back

3x10"7 —Chile 1960 (M=9.2)
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Zoome-in to earthquake

about 40 sec time-scale, M(2D)=1.8 X 107, mean slip at the fault 17
m, stress drop 6 MPa, rupture penetrates to about 500° C-isotherm
depth

10%cmlyr log strain rate, 1/s 500° C X-Displacement, m

DX
6,000e+00

-21
-2.500e+01



Zoome-in to earthquake

about 40 sec time-scale, M(2D)=1.8 X 107, mean slip at the fault 17
m, stress drop 6 MPa, rupture penetrates to about 500° C-isotherm
depth
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Z-AXis
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Z-AXis
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Z-Axis
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Z-AXis
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Z-AXis
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Z-AXis
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Evolution of viscosity In mantle w
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Evolution of viscosity In mantle w
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Surface X-velocity vs time
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x=100, cml/yr
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Visco-elastic relaxation
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Visco-elastic relaxation

Fault control
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Model verification

Comparison with GPS observations
for Tohoku 2011 earthquake



i « Firad Station :|WASAK!

* Duration
Frc 2014/05/01-2014105/15
To 2015/05/02-2015105/16

From GPS coordinates for each station we calculate EW
displacement relative to the 2" day after the
earthquake, and then normalize it by 1 year
displacement



Application for Tohoku 2011
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Application for Tohoku 2011
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Application for Tohoku 2011
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Interesting effects:
Upper plate deformation
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Conclusions (2D)

We have developed the model able to simulate seismic cycle
and subduction process in time scale range from rupture
(minute) to geological time (Min years)

The model suggests that after the great (M>9) earthquake
viscosity in the mantle wedge can drop by 4 orders of
magnitude. As a result, surface displacements are controlled by
the relaxation in mantle wedge already since 1 hour after the
earthquake.

The model is consistent with the short-time scale GPS data for
Tohoku 2011 earthquake

Many interesting effects show up in the models already but
much more can be expected



3D Modelling
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SLIM3D Cross-scale model




SLIM3D Cross-scale model




Conclusions

Great earthquakes may well happen within the very
weak fault zones (subduction channels) with static
friction about 0.01-0.05 due to the friction drop of
about 0.005-0.01.

What makes earthquake great is not large stress drop,
but rupturing at large area (homogeneous channel
structure, no barriers).



Conclusions

Observed correlation with the structure of the upper
plate (not subducting plate), in particular with
presence of sedimentary basins above seismogenic
zones, Is surprising and intriguing.

The best (till now) explanation is stability (and low
permeabllity) of the wedge (Fuller at al, 2005), but
their model needs update

Interesting perspective Is a cross-scale modeling
allowing simulation of seismic cycle in the same model
that explains geological-time-scale processes



