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Mid-ocean ridge systems 

  Multiple physics 
  Solid flow 
  Faulting 
  Porous melt migration 
  Magmatic intrusions 
  Hydrothermal circulation 

  Multiple time scales 
  Seconds to day: earthquakes, intrusion 
  Day to year: eruptions 
  Year to millennium: hydrothermal circulation 
  Millennium to million years: mantle flow, melt migration 



Ridge Morphology 

Neo-volcanic zone 

Seamounts 

Faults 



Melting at Depth 

  Wide 
region 
where 1 to 
2% partial 
melt is 
present 

MELT Seismic 
Team, 1998 



Proposed Focusing Mechanisms 

Ridge 
suction Impermeable lid 

Buoyant 
upwelling 

Coalescing 
channels 

Foliation 

Hydrofractures 



Coupled model (Finite Volume) 

  McKenzie two-phase 
flow equations + 
“Enthalpy” method 
(Katz 2008) 

  Three-step melt 
migration 
  1) Vertical melt 

migration 
  2) Along a 

permeability barrier 
  3) Extraction at the 

axis Colors: log10(φ); white: mantle flow; yellow: isotherms 
U0=4cm/yr, η=5x1017Pa.s 

Katz, 2010, G3 



Modeling melt migration: the good guys 

  Two phase flow 
  Dynamic equilibrium 
  Thermodynamics 
  Interface interactions 



Modeling melt migration: the slacker 

  Parameterized 
  Static 
  No coupling 

  Evaluate against 
observations 

  Includes 3D effects 



Simplified melt migration model 

  1) Rapid, subvertical melt 
extraction below the 
plate 

  2) Sub-horizontal 
migration along a 
permeability barrier at 
the base of the 
lithosphere 

  3) Subvertical extraction 
at tectonized plate 
boundary 

Inspired by Sparks and Parmentier, 1991 
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Slow Spreading: Mid-Atlantic Ridge 

Multi-resolution gridded digital elevation model accessed using GeoMapApp 

Field of view ~ 300km 
2x VE 



Fast Spreading: East Pacific Rise 

Multi-resolution gridded digital elevation model accessed using GeoMapApp 

Field of view ~ 300km 
2x VE 



Ultraslow spreading: SW Indian Ridge 

Multi-resolution gridded digital elevation model accessed using GeoMapApp 

Field of view ~ 300km 
2x VE 



Mid-ocean Ridges 

Orthogonal slow 
Orthogonal ultraslow 
Oblique slow 
Oblique ultraslow 



  Angle between ridge-normal direction and plate 
spreading direction 
  Orthogonal ridges have 0 obliquity 

  Decompose plate velocity into effective 
spreading rate VE and effective shear rate VS 

Definition of Obliquity 



SWIR 54-57°E 

Sauter et al., 2001; 2004 



Ultraslow ridge 

  Amagmatic, oblique segment 
  Large, localized volcanic centers  

Dick et al., 2003 



Model Configuration 

  Model invariant along ridge axis, steady-state 
  Obliquity γ, lithosphere slope π/2-α	


  Obtain similarity solution 



Mantle Flow Field Decomposition 

Ridge-perpendicular corner flow 
Driven by effective opening 

velocity 

Ridge-parallel shear flow 
Driven by ridge-parallel velocity 



Thermal Structure 

  Heat equation  
  Only corner flow components appear 

  Conduction balanced by corner flow 
component only 
  Single thermal length scale  
  L*= κ/VΕ=κ/(VPcosγ) 



Thermal Boundary Layer 

Montési and Behn, 2007 

  Universal thermal solution scales with L*=κ/Ve 

  On axis: zTBL~5κ/Ve 



Why neglect buoyancy? 
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  Assume   
  Depth of TBL with Thermal 

diffusivity10-6 mm2/s 
  1% melt with Δρ=300 kg/m3 

  Viscosity 1019Pa.s 
  Corner flow dominates if 

Ve>1cm/yr 

  Compare pressure gradients from corner 
flow with melt-induced buoyancy 

€ 

pc = −ηsVe
4
π
1
r
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Effective Velocity at Ultraslow Ridges 

  Critical effective velocity: 6.5 mm/yr 

Arctic Ridges 

SWIR 

Others 

Ultraslow 

Slow 

  

€ 

VE = VP cos γ
Montési and Behn, 2007 
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Melt migration; 1st simplification 

  Darcy flow 

  Melt buoyancy (Δρg~3 MPa/km) 
dominates over pressure gradients from 
corner flow if  velocity is larger than  

  For all ridges on Earths, melt propagation 
is buoyancy-dominated 
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~ 24cm/yr



Melt migration; 2nd simplification 

  Darcy flow 

  Permeability of 10-11 m2 for grain size of 
1cm and 2% melt induces melt velocities 
of 1m/yr 

  Melt velocity far exceeds that of the 
mantle 

  Melt moves upward, and fast! 
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5% melt 

Olivine + basalt system, 3D synchrotron images 
(0.7µm resolution) Zhu et al., 2011 



Melt distribution: microscale 

3D synchroton images, Zhu et al., Science, 2011’ 

Interconnected 
network along 
grain edges 

2% melt 5% melt 

10% melt 20% melt 

€ 

k ∝ d2φ3

k~10-11 m2 if 
d~1cm φ~2% 



Melt channels 

  Feedback between 
  Porosity/viscosity 

  Stevenson, 
Holtzman, Katz, 
Butler 

  Porosity/melting 
  Hewitt and Fowler 

  Reactive flow 
  Kelemen, 

Aharonov, 
Spiegelman 

Image by Marc Spiegelman 



Simplified melt migration model 

  1) Rapid, subvertical melt 
extraction below the 
plate 

  2) Sub-horizontal 
migration along a 
permeability barrier at 
the base of the 
lithosphere 

  3) Subvertical extraction 
at tectonized plate 
boundary 

Inspired by Sparks and Parmentier, 1991 
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lithosphere

Melting Zone

Melt extraction
zone

Definition of the permeability barrier 

  Accumulate fractional melt  produced in 
melting zone 

  Cooling at the base of the lithosphere 
  Ignores wet melying 

Hebert and Montési, 2010, following Sparks and Parmentier, 1991 

~60km 



Crystallization rate 

  Initially slow 
crystallization 

  Peaks at pg±cpx 

  Calculate with 
MELTS software 

  Magma batches 
ascending in the 
thermal boundary 
layer 
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Permeability barrier geometry 

100 mm/yr half-spreading rate

80 mm/yr half-spreading rate

60 mm/yr half-spreading rate

40 mm/yr half-spreading rate

20 mm/yr half-spreading rate

Figure 6.

10 mm/yr half-spreading rate
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Tk=1240°C + 1.9z 
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Simplified melt migration model 

  1) Rapid, subvertical melt 
extraction below the 
plate 

  2) Sub-horizontal 
migration along a 
permeability barrier at 
the base of the 
lithosphere 

  3) Subvertical extraction 
at tectonized plate 
boundary 

Inspired by Sparks and Parmentier, 1991 
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SWIR 10-16°E 

  Slow to ultraslow morphology 
  Spreading half rate: 7.5 mm/yr 



Southwest Indian Ridge 

  7700 km long 
ridge separating 
Africa and 
Antarctica 

  7 to 7.5 mm/yr 
(half rate) 

  Several oblique 
segments 



SWIR 10-16°E 
  Oblique 

supersegment 
  Dominantly 

amagmatic 
  Large, localized 

volcanic centers 
  Orthogonal 

supersegment 
  East of 16°E 
  Standard slow 

morphology 



Focusing of Enriched Melts 

Standish et al., 2008 



  Solve Stokes flow and heat equation 
  Q2/Q1 elements, viscoplastic rheology 
  Impose plate velocity at surface 
  Fixed surface and bottom temperature 

Finite Element 
Model 

Montési et al., 2011 



Permeability 
Barrier 
Geometry 
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Montési et al., 2011 



SWIR Along-axis variations 

  Thermal maximum at JMS, no Narrowgate 
  JMS anomaly not of sufficient amplitude 

Shaka
transform
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SWIR: Geophysical Constraints 

  “No” crust at oblique 
supersegment 

  Thick crust at Joseph 
Mayes Seamount and 
Narrowgate 

Montési et al., 2011 



Melt extraction strategy 
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Melt focusing a SWIR 10°-16°E 

0 100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

C
ru

st
a

l t
h

ic
kn

e
ss

 (
km

) Shaka
transform

Oblique
supersegment

JMS
NG

Along-axis distance (km)

Joseph Mayes Seamount Narrowgate Montési et al., 2011 



Crustal accretion zone

Crustal
extraction

zone

Melt focusing

~ 20 km

~ no vertical
exaggeration

Melt extraction at Narrowgate 

Montési et al., 2011 



Importance of serpentine? 

  No anomaly underneath 
OS2 implies low density 
material 

  Serpentinize 60% of 
material cooler than 450°C 
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EPR 9°N 

  Very fast spreading (105 mm/yr) 
  ~100km long transform faults 



EPR 9°N geology 

Gregg et al., 2009 



Gravity anomalies at transforms 
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Gregg et al., 2007 



Two explanations 
Gregg et al., 2007: Crustal-level redistribution 

Gregg et al., 2009: Mantle-level focusing 



Focusing away from transforms 

  Trajectory along a barrier 
(here solidus) focus 10 to 
25 km away from 
transform 

  “We assume that the melt 
between these points and 
the transform fault is 
redistributed evenly by 
along-axis melt 
transport.” 

Weatherley and Katz, G3, 2010 
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Melt focusing at the Siqueiros transform 
Siqueiros Transform (with ITSCs)
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Melt Extraction Zones 

  Extraction 
facilitated by 
tectonic damage  
  Faults 
  Dikes 

  Extraction at 
transform shunts 
melt focused 
toward axis 

Hebert and Montési, 2011 

Ridge axis 

Transform 
domain 



Summary 

  Modeling melt migration 
  3-step melt migration 

model works great! 
  Permeability barrier at 

1240°C+1.9z 
  Melt extraction zone 

<10km from plate 
boundary and 30km depth 

  Ultraslow ridges 
  Melt production but 

inefficient extraction 

  Intermediate/fast 
transforms 
  Additional melt extraction if 

TBL is thin enough Inspired by Sparks and Parmentier, 1991 
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Outstanding issues 

  Transition from continuous to discrete 
physics 
  Porous flow to intrusion 

  Multiple porosity model? 

  Mantle flow to faulting 
  Interaction across time scales 

  Repeated events 
  Accretion / evolving plate boundary 


