Melt Extraction at Mid-Ocean Ridges A play in three acts

Laurent G.J. Montési¹, Laura B. Hebert^{1,} Mark D. Behn² ¹University of Maryland, ²Woods Hole Oceanographic Institution

Outline

Motivation: focusing at Mid-ocean ridges Ridge morphology from fast to ultraslow spreading Scaling relation of thermal structure A three-step melt migration scenario Rapid extraction **Permeability barrier** Application to Southwest Indian Ridge Application to East Pacific Rise (EPR)

Outline

Motivation: focusing at Mid-ocean ridges Ridge morphology from fast to ultraslow spreading Scaling relation of thermal structure A three-step melt migration scenario Rapid extraction Permeability barrier Application to Southwest Indian Ridge Application to East Pacific Rise (EPR)

Mid-ocean ridge systems

- Multiple physics
 - Solid flow
 - Faulting
 - Porous melt migration
 - Magmatic intrusions
 - Hydrothermal circulation
 - Multiple time scales
 - Seconds to day: earthquakes, intrusion
 - Day to year: eruptions
 - Year to millennium: hydrothermal circulation
 - Millennium to million years: mantle flow, melt migration

Ridge Morphology

Melting at Depth

Proposed Focusing Mechanisms

Coupled model (Finite Volume)

50

Katz, 2010, G³

- McKenzie two-phase flow equations + "Enthalpy" method (Katz 2008)
- Three-step melt migration
 - 1) Vertical melt migration
 - 2) Along a permeability barrier <u>100</u>
 - 3) Extraction at the axis

Colors: $log_{10}(\phi)$; white: mantle flow; yellow: isotherms $U_0=4cm/yr, \ \eta=5x10^{17}Pa.s$

Modeling melt migration: the good guys

Two phase flow
Dynamic equilibrium
Thermodynamics
Interface interactions

Modeling melt migration: the slacker

Parameterized
Static
No coupling

Evaluate against observations Includes 3D effects

"Any intelligent fool can make things bigger, more complex, and more violent. It takes a touch of genius – and a lot of courage – to move in the opposite direction." Albert Einstein

bind bield www.com

Simplified melt migration model

- 1) Rapid, subvertical meltextraction below theplate
- 2) Sub-horizontal
 migration along a
 permeability barrier at
 the base of the
 lithosphere
- 3) Subvertical extraction at tectonized plate boundary

Inspired by Sparks and Parmentier, 1991

Outline

Motivation: focusing at Mid-ocean ridges Ridge morphology from fast to ultraslow spreading Scaling relation of thermal structure A three-step melt migration scenario Rapid extraction Permeability barrier Application to Southwest Indian Ridge Application to East Pacific Rise (EPR)

Slow Spreading: Mid-Atlantic Ridge

Multi-resolution gridded digital elevation model accessed using GeoMapApp

Fast Spreading: East Pacific Rise

Axial high Off-axis volcanism Clipperton FZ Seamounts Offsets and overlappers 9°03'N Intra-transform spreading centers (ITSC) Siqueiros FZ ITSC

Field of view ~ 300km 2x VE

Multi-resolution gridded digital elevation model accessed using GeoMapApp

Ultraslow spreading: SW Indian Ridge

Siqueiros FZ

Field of view ~ 300km 2x VE

shaka FZ

Deep valley
No transform offsets
Mantle on seafloor
Localized volcanism
Obliquity variations

Multi-resolution gridded digital elevation model accessed using GeoMapApp

Mid-ocean Ridges

Orthogonal slow Orthogonal ultraslow Oblique slow Oblique ultraslow

Definition of Obliquity

- Angle between ridge-normal direction and plate spreading direction
 - Orthogonal ridges have 0 obliquity
- Decompose plate velocity into effective spreading rate V_E and effective shear rate V_S

SWIR 54-57°E

Model Configuration

- Model invariant along ridge axis, steady-state
- Obliquity γ , lithosphere slope $\pi/2-\alpha$
- Obtain similarity solution

Mantle Flow Field Decomposition

Ridge-perpendicular corner flow Driven by effective opening velocity

 $\nabla^4 \phi = 0$

$$V_{\text{E}} = V_{\text{P}} \cos \gamma$$

Ridge-parallel shear flow Driven by ridge-parallel velocity

 $\Delta V_v = 0$

$$V_{\rm S} = V_{\rm P} \sin \gamma$$

Thermal Structure Heat equation Only corner flow components appear $\mathbf{v}_{\mathbf{x}} \frac{\partial \mathbf{T}}{\partial \mathbf{x}} + \mathbf{v}_{\mathbf{z}} \frac{\partial \mathbf{T}}{\partial \mathbf{z}} + \mathbf{v}_{\mathbf{z}} \frac{\partial \mathbf{T}}{\partial \mathbf{z}} = \kappa \left(\frac{\partial^2 \mathbf{T}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{T}}{\partial \mathbf{z}^2} + \frac{\partial^2 \mathbf{T}}{\partial \mathbf{z}^2} \right)$ Conduction balanced by corner flow

- conduction balanced by corner fic component only
 - Single thermal length scale
 - $L^* = \kappa / V_E = \kappa / (V_P \cos \gamma)$

Thermal Boundary Layer

Universal thermal solution scales with $L^* = \kappa / V_e$ On axis: $z_{TBL} \sim 5\kappa / V_e$

Why neglect buoyancy?

Compare pressure gradients from cornerflow with melt-induced buoyancy41

 $\geq \phi \Delta \rho g$ πr

Assume

- Depth of TBL with Thermal diffusivity10⁻⁶ mm²/s
- 1% melt with $\Delta \rho$ =300 kg/m³
- Viscosity 10¹⁹Pa.s
- Corner flow dominates if V_e>1cm/yr

$$V_{e} \ge \left(\frac{25\pi\kappa^{2}\phi \,\Delta\rho \,g}{4\eta_{s}}\right)^{1/3}$$

 $p^{c} = -\eta_{s} V_{e} \frac{4}{\pi} \frac{1}{r} \cos\theta$

Effective Velocity at Ultraslow Ridges

Outline

Motivation: focusing at Mid-ocean ridges Ridge morphology from fast to ultraslow spreading Scaling relation of thermal structure A three-step melt migration scenario Rapid extraction **Permeability barrier** Application to Southwest Indian Ridge Application to East Pacific Rise (EPR)

Melt migration; 1st simplification

Darcy flow
$$\phi(\mathbf{v}_{\mathbf{f}} - \mathbf{v}_{s}) = -\frac{k}{\eta_{f}} \left[\bigvee_{f} - \rho_{f} \mathbf{g} \right]$$

Melt buoyancy (Δρg~3 MPa/km) dominates over pressure gradients from corner flow if velocity is larger than

$$V_e \ge \left(\frac{25\pi\kappa^2\Delta\rho g}{4\eta_s}\right)^{1/3} \sim 24 \text{ cm/yr}$$

 For all ridges on Earths, melt propagation is buoyancy-dominated

Melt migration; 2nd simplification

Darcy flow

$$\mathbf{v}_f = \mathbf{k} + \frac{\mathbf{k}}{\mathbf{\phi} \mathbf{\eta}_f} \mathbf{\rho}_f \mathbf{g}$$

1

- Permeability of 10⁻¹¹ m² for grain size of 1cm and 2% melt induces melt velocities of 1m/yr
- Melt velocity far exceeds that of the mantle
- Melt moves upward, and fast!

Melt distribution: microscale

3D synchroton images, Zhu et al., Science, 2011'

Melt channels

- Feedback between
 - Porosity/viscosity
 - Stevenson, Holtzman, Katz, Butler
 - Porosity/melting
 Hewitt and Fowler
 - Reactive flow
 - Kelemen,
 Aharonov,
 Spiegelman

Image by Marc Spiegelman

Simplified melt migration model

- 1) Rapid, subvertical meltextraction below theplate
- 2) Sub-horizontal
 migration along a
 permeability barrier at
 the base of the
 lithosphere
- 3) Subvertical extraction at tectonized plate boundary

Inspired by Sparks and Parmentier, 1991

Definition of the permeability barrier

- Accumulate fractional melt produced in melting zone
- Cooling at the base of the lithosphere
- Ignores wet melying

Hebert and Montési, 2010, following Sparks and Parmentier, 1991

Crystallization rate

Calculate with MELTS software Magma batches ascending in the thermal boundary layer

Initially slow crystallization
Peaks at pg±cpx

Hebert and Montési, 2010 Kelemen and Aharonov, 1998

Permeability barrier geometry

Hebert and Montési, 2010, Montési and Behn,, 2007

Simplified melt migration model

- 1) Rapid, subvertical meltextraction below theplate
- 2) Sub-horizontal
 migration along a
 permeability barrier at
 the base of the
 lithosphere
- 3) Subvertical extraction at tectonized plate boundary

Inspired by Sparks and Parmentier, 1991

Outline

Motivation: focusing at Mid-ocean ridges Ridge morphology from fast to ultraslow spreading Scaling relation of thermal structure A three-step melt migration scenario Rapid extraction Permeability barrier Application to Southwest Indian Ridge Application to East Pacific Rise (EPR)

SWIR 10-16°E

Slow to ultraslow morphologySpreading half rate: 7.5 mm/yr

Southwest Indian Ridge

 7700 km long ridge separating Africa and Antarctica

- 7 to 7.5 mm/yr (half rate)
- Several oblique segments

SWIR 10-16°E

Oblique supersegment Dominantly amagmatic Large, localized volcanic centers Orthogonal supersegment East of 16°E Standard slow morphology

Permeability Barrier Geometry

$T_k = 1240^{\circ}C + 1.9z$

SWIR Along-axis variations

Thermal maximum at JMS, no Narrowgate
JMS anomaly not of sufficient amplitude

SWIR: Geophysical Constraints

Melt extraction strategy

Melt focusing a SWIR 10°-16°E

Melt extraction at Narrowgate

Importance of serpentine?

 Serpentinize 60% of material cooler than 450°C

Montési et al., 2011

Relative Crustal Thickness (km)

0

14°

2

16°

3

12°

 10°

-2

-3

Outline

Motivation: focusing at Mid-ocean ridges Ridge morphology from fast to ultraslow spreading Scaling relation of thermal structure A three-step melt migration scenario Rapid extraction Permeability barrier Application to Southwest Indian Ridge Application to East Pacific Rise (EPR)

Very fast spreading (105 mm/yr)
~100km long transform faults

EPR 9°N

EPR 9°N geology

Gravity anomalies at transforms

Gregg et al., 2007

Two explanations

Focusing away from transforms

Trajectory along a barrier (here solidus) focus 10 to 25 km away from transform

 "We assume that the melt between these points and the transform fault is redistributed evenly by along-axis melt transport."

Weatherley and Katz, G³, 2010

Melt focusing at transforms

Melt Extraction Zones

Extraction facilitated by tectonic damage Faults Dikes Extraction at transform shunts melt focused toward axis

Hebert and Montési, 2011

Summary

Modeling melt migration

- 3-step melt migration model works great!
- Permeability barrier at 1240°C+1.9z
- Melt extraction zone
 <10km from plate
 boundary and 30km depth
- Ultraslow ridges
 - Melt production but inefficient extraction
- Intermediate/fast transforms
 - Additional melt extraction if TBL is thin enough

Inspired by Sparks and Parmentier, 1991

Outstanding issues

Transition from continuous to discrete physics Porous flow to intrusion Multiple porosity model? Mantle flow to faulting Interaction across time scales **Repeated events** Accretion / evolving plate boundary