Sea level and basin subsidence from global dynamic earth models

Michael Gurnis Seismological Laboratory California Institute of Technology

In collaboration with Sonja Spasojevic, Lijun Liu, Lydia DiCaprio, R. Dietmar Müller, and Rupert Sutherland

Mantle Convection Workshop, Aug., 2011

Note: Unpublished global models presented at meeting note in this slide pack.

Sea Level Change and Vertical Motions

Western Interior Seaway: 80 Ma

Outline

- Global Sea Level and general hypothesis
- Observational and theoretical limitations
- 4-D Dynamic earth models
- Regional applications
 - Australia
 - North America
 - Antarctica-New Zealand
- Simultaneous prediction of global and relative sea levels

Sea Level Change and Vertical Motions

Carrying capacity of the ocean basins – 'Pitman hypothesis'

Carrying capacity of the ocean basins – 'Pitman hypothesis'

- Change in spreading rates
- Change in length of ridges
- Formation of 'Atlantic' basin
- Change in the age distribution of the sea floor

Changes in Ocean Basin Volume

Müller et al. [2008]

Sea level and Australian continental inundation

The Australian continent becomes more inundated

Continental Epeirogeny and Eustasy

Gerard Bond, 1940-2005

Bond [1978]

Two scales of Australian Vertical Motions

C. Observed Inundation

Miocene Tilting

Sandiford [2007]

Best fitting tiltings

1. Remove sediment from the continent and then inundated with the global sea level. 2. We reduce the mismatch between the expected coastline and the observed coastline by tilting the continent. 3. Adding the planar surface to the expected topography gives our resultant topography.

1. Expected Australian topography (Miocene)

Long & short wavelength vertical motions

DiCaprio et al. [2009]

Sea level, ocean basins & conservation of mass

Lateral viscosity variations have a large effect on topography and geoid

Billen & Gurnis [2001]

Software elements for 4D Dynamic Earth Models

Data Construction, Assimilation, and computation

Equations of Mantle Convection and Plate Motions

$$\frac{\partial \mathbf{T}}{\partial \mathbf{t}} + u \cdot \nabla T - \nabla^2 T = \gamma$$

$$\nabla \cdot \left[\eta(T, p, u) \left(\nabla u + \nabla^T u \right) \right] - \nabla p = -RaTe_{r}$$

$$\nabla \cdot u = 0$$

Variables

- *T* temperature
- *u* velocity
- *p* pressure

Parameters

 $Ra \sim 10^6 - 10^9$ Rayleigh number

 γ heat productin rate

 $\eta(T, p, u)$ viscosity (temperature -

and pressure - dependent, non - linear)

 e_r radial direction

GPlates

University of Sydney

Caltech

Norwegian Geological Survey/ University of Oslo

www.gplates.org

Continuously Closed Plate Polygons with Self-Consistent Motion Between Margins and Plates

g0.9.1 59 Ma

GPlates.org

Linking elements of 4-D earth models

Australia Since 50 Ma

Subsidence and tilting

A kinematic analysis of paleoshorelines shows that Australia subsided and tilted downwards by about 300 meters over a continental-scale Since about 40 Ma

DiCaprio, et al. [2009]

Regional-Global Coupling

DiCaprio, Gurnis, Müller & Tan [2011] *Using the coupling approach of Tan et al.* [2006]

2 Myr (step4400) 88km (nz63)

2 Myr (step4400) 147 deg (ny150)

Differential Motion since 50 Ma

DiCaprio et al. [2011]

Differential motion w.r.t. topography at 44 Ma

North America Since the Late Cretaceous

→ Develop a single geodynamic model that predicts Cretaceous subsidence, Tertiary uplift and putative subsidence in the easterr US.

Well documented flooding and dynamic subsidence in Western Interior Seaway [Cross & Pilger, 1978]

Motivation

- Interpreted to be related to change in Farallon slab dip (e.g. Mitrovica *et al.* [1989])
- Substantial discrepancy between New Jersey sea level (Miller *et al.*,2005) and other global sea-level curves

Inverse Convection Model with 'Topographic Target' Initial Ra off by 4X and both ΔT and η Incorrect

Example 1

Figure 1
Farallon slab beneath North America

Ritsema et al

Bernhard Steinberger's Interpretation of the Liu et al. [2008] Inversion.

Cross section at 42 N through North America

Prediction of flooding and vertical motions in the 'plate frame'

D η_{LM}=15 η_{UM}=1.0

Prediction of borehole subsidence

 η_{LM} =15, η_{UM} =0.1, dT=0.4

Liu et al., 2008

Dynamic topography migrates over North America

Age = 70.00 Ma

Age = -0.00 Ma

Liu, Spasojević. & Gurnis [2008]

The Cretaceous Seaway

Shaofeng Liu et al. [2011]

Cretaceous Section

Shaofeng Liu et al. [2011]

A migrating depo-center versus simple E-W tilting

Liu et al. [2008]

Liu & Gurnis [2010]

Uplift of the Colorado Plateau

Paleo shoreline analysis

No subsidence/uplift: Elevation(Shoreline(T_1))_{present}=SeaLevel(T_1) Land subsidence: Elevation(Shoreline(T_1))_{present}<SeaLevel(T_1)

Dynamic topography predictions

Dynamic subsidence of the US east coast

Mantle Upwelling in the SW Pacific?

Location and tectonic history

Cretaceous Paleogeography of the Ross Sea Region

Campbell Plateau subsidence

Excess subsidence ~ 0.4-1.0 km
Residual subsidence dies away 70-40 Ma

Sutherland et al. [2010]

S20RTS tomography model

Motivation

- Can we simultaneously match in a single model
 - Time-evolution of dynamic topography (Campbell plateau)
 - Present-day observations of geoid, dynamic topography and seismic tomography?

 η_0

dT (max) = 400°C

Temperature Spasojevic et al., 2010

Model parameters $\eta_{LM} = 10^{23} \text{ Pa s}$ $\eta_{UM} = 10^{21} \text{ Pa s}$ dT (max) = 400°C

Campbell plateau subsidence

Campbell plateau subsidence

Campbell plateau subsidence

Topography prediction

Viscosity inferred: relative ratios

Viscosity inferred: absolute value

Take Away Message

- Time-dependent constraints on surface evolution provide constraints on earth dynamics when they are combined with present-day geophysical observations.
- Alone, neither tomography nor surface observations (such as vertical motions) provides us with a 4-D view of the earth's interior. But tomography, surface constraints, and plate motions, linked through a geodynamic model, does provide us with a 4-D framework of the interior.
- That framework provides not only a context to interpret observations, such as to pose new testable predictions in time and space, but it is also a vehicle to better understand earth dynamics.

Some Limits, controversies and upcoming developments

- Sharp and localized viscosity variations can have a significant impact on surface topography and geoid. As such, the short variations in topography (~200 km and less) can change significantly.
- There are no crustal thickness variations in the global sea level models (stay-tuned, the new *GPlates* and our present reconstructions have deforming plates).
- There are significant controversies regarding:
 - The plate reconstructions in the Pacific before 60 Ma. The reconstruction that we use has an age distribution with increasing ages since Cretaceous and this is the largest driver on the 'average' fall in global sea level.
 - The model predictions for the vertical motions on the U.S. east coast are slow dynamic subsidence. Other model arguments suggest that the region could be uplifting. Great opportunity for U.S. Array.