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At mid-ocean ridges, lithosphere is created by melt extraction and metasomatism, and the oceanic
crust forms as melt collects near the surface. As the presence of melt has both rheological and
geochemical consequences for the lithosphere, it is of primary importance to understand the mech-
anisms that control melt migration and extraction at mid-ocean ridges.

Although melt migration is described rigorously by two-phase transport equations in porous or
fractured media [1-3], scaling considerations and geological constraints lead to simplifications. It
is possible to capture the essence of melt extraction by considering three principal stages:

Stage 1) Melt rises vertically from the zone of melt production to a melt-impermeable boundary,
or permeability barrier the base of the thermal lithosphere. At this stage, melt trajectories are
sub-vertical. They are controlled by melt buoyancy and the high permeability of the partially
molten mantle, in which melt remains connected even for low melt porosity [4]. Decompaction
channels induced by melt-rock reaction and/or melt weakening may further increase the effective
permeability of the mantle [5-8].

Stage 2) Melt travels long a permeability barrier that forms at a crystallization front [9]. As melt
enters the lithosphere and cools, it crystallizes and possibly clogs the pore space [10-12]. A barrier
is most likely to form where crystallization rate highest, which, in basaltic systems, occurs at the
point of plagioclase + pyroxene saturation [13]. This location follows approximately 1240°+1.9z,
where z is depth in km [14,15]. As the depth of barrier depends on the thermal structure of the
lithosphere, it is generally inclined so that melt, being buoyant, travels and is generally focused
toward the ridge axis. If the thermal boundary layer is too thick, deep crystallization may be so
slow that the lithosphere can decompact and accommodate the crystallization products leading
to a metasomatized zone instead of a barrier [11,13]. This is most likely to occur at ultraslow
spreading centers [15].

Stage 3) Melt is extracted to the surface, either because melt reaches a place where the barrier is
horizontal and focusing stops, or because it enters a melt extraction zone (MEZ), which may be
physically interpreted as the presence of faults and/or dikes leading to rapid lateral and vertical
melt migration toward plate boundaries [16,17]. However, if focusing stops where the barrier is
too deep, melt may instead crystallize at depth again metasomatizing the mantle at the level of
the permeability barrier.

Stages 2 and 3 are directly influenced by the structure of the thermal lithosphere, which is itself
controlled by segmentation of the ridge axis and spreading rate [16-21]. Thus, it is possible to use
along-strike variations in melt deliver at well-studied geological examples to constrain the various
parameters controlling each of these stage. Recently, it has been shown that the crust along trans-
form faults at fast-spreading ridges is anomalously thick [22], which suggest melt redistribution
toward transforms, intra-crustal melt production, or efficient extraction of melt in the transform
domain [20]. Specific models of the Siqueiros transform along the East Pacific Rise shows that con-
sidering a melt extraction zone explains the presence of thickened crust in the transform domain



[16]. The ultraslow Southwest Indian Ridge at 10°-15°E illustrates the opposite end-member of
ridge systems, where the lithosphere is thick and little melting occurs. Strong along-strike varia-
tions in crustal thickness [23] can be explained by the presence of a melt extraction zone less than
10 km wide and roughly 30 km thick [20].
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Figure 1: Schematic representation of melt focusing processes in a 2D
section across a mid-ocean ridge. The lithosphere (brown) thickens away
from the ridge. Green and red lines represent the trajectories of the solid
mantle and melt, respectively. Extraction is vertical in Stage 1, possibly
along dissolution channels that drain the melt production region (orange
triangle). Extraction is sub-horizontal in Stage 2, along a permeability
barrier near the base of the lithosphere, where temperature is 1240°+1.9z
with z the depth in km. Finally extraction is sub-vertical again in Stage
3, in a tectonically controlled melt extraction zone (blue box) near the
ridge axis and other plate boundaries. 3-D variation of melt focusing at
ultraslow and ultrafast ridges imply that the melt extraction zone is less
than 10 km and roughly 30 km deep;



