Übungsaufgaben zur Vorlesung "Mathematik I für Geoökologen und Geowissenschaftler"

#7

Letzter Abgabetermin: 18. 12. 2009

1. Berechnen Sie die folgenden Determinanten!

a)
$$\begin{vmatrix} 2.3 & 4.5 \\ 1.9 & -1.7 \end{vmatrix}$$
 b) $\begin{vmatrix} 2 & 3 & -1 \\ 3 & -2 & 5 \\ 4 & 6 & -2 \end{vmatrix}$ c) $\begin{vmatrix} 5 & 1 & 0 & 0 \\ 2 & 5 & 2 & 0 \\ 0 & 3 & 5 & 1 \\ 0 & 0 & 4 & 5 \end{vmatrix}$

(3 Punkte)

2. Zeigen Sie, dass für die Determinante der Rechts-Dreiecksmatrix $R \in \mathbb{R}^{n \times n}$ mit

$$R = \begin{pmatrix} r_{11} & r_{12} & r_{13} & \cdots & r_{1n} \\ 0 & r_{22} & r_{23} & \cdots & r_{2n} \\ 0 & 0 & r_{33} & \cdots & r_{3n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & r_{nn} \end{pmatrix} \text{gilt:} \qquad |R| = \prod_{i=1}^{n} r_{ii}.$$

(3 Punkte)

3. Berechnen Sie den Rang der Matrix
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 4 & 5 & 6 & 7 \\ 8 & 9 & 10 & 11 \end{pmatrix}$$
 (vgl. #6,2.d))!

(1 Punkt)

4. Welche der linearen Gleichungssysteme aus #6,1. sind mit der Cramerschen Regel lösbar? Begründen Sie Ihre Antworten für a), b), c),d)!

(2 Punkte)

- 5. Gegeben sei die lineare Abbildung $\varphi: \mathbb{R}^3 \to \mathbb{R}^2$ durch $y = \varphi(x) = Ax$ mit $A = \begin{pmatrix} 4 & 2 & -8 \\ 3 & 3 & 6 \end{pmatrix} \in \mathbb{R}^{2\times 3}, \ x \in \mathbb{R}^3, \ y \in \mathbb{R}^2.$
 - a) Bestimmen Sie den Kern der linearen Abbildung φ !
 - b) Zeigen Sie, dass dieser Kern Trägermenge eines Unterraumes des Raumes \mathbb{R}^3 ist!
 - c) Nun sei $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$. Zeigen Sie, dass der Kern jeder linearen Abbildung $y = \varphi(x) = Ax$ Trägermenge eines Unterraumes des Raumes \mathbb{R}^n ist! (7 Punkte)