Übungsaufgaben zur Vorlesung "Mathematik II für Geoökologen und Geowissenschaftler"

#12

Letzter Abgabetermin: 5. 7. 2011

- 1. Beschreiben Sie die folgenden Kurven durch parameterabhängige Ortsvektoren und bestimmen Sie jeweils den Tangentenvektor!
 - a) Gerade durch P(1,0) mit Anstieg $\frac{1}{2}$.
 - b) quadratische Parabel $y = x^2 + 1, x \ge 0$;
 - c) Ellipse mit Mittelpunkt im Ursprung und zu den Koordinatenachsen parallelen Halbachsen mit den Längen a > b > 0, α) positiver und β) negativer Umlaufsinn;

(6 Punkte)

2. Gegeben sei der zeitabhängige Ortsvektor $\vec{r}(t) = \begin{pmatrix} \frac{1}{\pi}t \\ \sin t \\ \cos t \end{pmatrix}$. Beschreiben und skizzieren

Sie die zugrundeliegende Bewegung für $t \ge 0$!

(2 Punkte)

3. Auf dem Bildschirm eines Oszillografen durchlaufe ein Elektronenstrahl eine Bahn mit dem zeitabhängigen Ortsvektor

$$\vec{r}(t) = \begin{pmatrix} a\cos(m\omega t) \\ b\sin(n\omega t) \end{pmatrix}, t \ge 0,$$

wobei a,b,m,n,ω reelle Konstanten sind.

- a) Skizzieren Sie die Bahnkurven für a = b = 3, $\omega = 2\pi$ und
 - α) m=n=1,
 - β) m = 1, n = 2!
- b) Bestimmen Sie für den Ortsvektor $\vec{r}(t)$ den Geschwindigkeitsvektor $\vec{v}(t)$ und den Beschleunigungsvektor $\vec{a}(t)$!

(6 Punkte)

4. Bestimmen Sie die Länge der Parabel $a(t) = {t \choose t^2}$, $-2 \le t \le 2$! (2 Punkte)