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Why do we model things ?

(1) Stability of structures — test before you build something
expensive
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Why do we model things ?

(2) Safety — a lot more safety testing per dollar
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Why do we model things ?

(3) Some things are too risky and/or unethical
. . . extermination of humanity
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Why do we model things ?

(4) Impossible experiments: astrophysics, plate tectonics
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Why do we model things ?

(5) Or forecasting the evolution of complex systems.
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Inside the Earth
A cursory glance at the earth: we barely scrape the surface
and still there’s an enormous amount going on
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Inside the Earth
We can also see a wealth of information at the surface both
on the land
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Inside the Earth
And in the ocean basins — using the right set of spectacles . . .

Here the age of the oceanic lithosphere as it rumbles along
from mid-ocean ridge to trench.
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Inside the Earth
Seismology allows us to probe the internal structure
instantaneouly
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Inside the Earth
But to understand the time evolution we need to use models
of the processes which unwind too slowly for us to wait and
see.
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Mathematical Earth Models
The starting point for mantle convection modeling is usually
Navier-Stokes equation for fluid flow

1

Pr

Du

Dt
−∇ · σ′ = RaTz

where Pr is the Prandtl number, and Ra is the Rayleigh
number.

D

Dt
≡ ∂

∂t
+ (u · ∇)

But this term is usually small since the Prandtl number (η/κ)
is absolutely enormous in the Earth.

This means there is no time dependent term left in the
momentum equation. We therefore have to use implicit
methods for the solution.
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Mathematical Earth Models
Assume incompressibility

∇ · u = 0

In a purely viscous formulation there is no way to represent
(physical) fluid compressibility directly since this is an elastic
property.

And an equation for thermal evolution

DT

Dt
− κ∇2T = Q

Note the reappearance of a time-dependent term ! The
coupled thermal/mechanical problem does evolve in time.

Obviously this is highly simplified — but it is a starting point,
and it is the traditional place to start for the large-scale
problem.
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Multigrid methods

• In geodynamics, the fact that inertia is negligible leaves
the equation of motion independent of time and it can
only be solved implicitly.

• The traditional implicit solver in FEM: build the matrix
equation and solve it directly exploiting banded nature of
matrix for efficiency. Unfortunately it is N 3 or, at best, N 2

process.

• For 3D etc, this is unacceptable. Iterative methods can do
much better: preconditioned conjugate gradient
(N log N ) or multigrid (N )
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Multigrid methods
Time as function of number of unknowns for several

methods
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Multigrid methods
Multigrid methods work by interleaving iterative solutions on
a nested set of grids (geometrically or conceptually (AMG))

Iterative scheme should be of a “smoothing” variety.
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Multigrid methods
It really does work. Here is the timing for an ever growing set
of convection simulations.
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Off the shelf codes ?
Most off-the-shelf codes were originally intended to solve
problems in engineering

• Testing of a man-made structure (e.g. against failure)

• Optimization of product design

• Analysis of structural response (e.g. bridge oscillations)

• Flow of “simple fluids” through complex geometries (e.g.
aircraft design)

. . . and that sort of thing
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Geoscience requirements
Geological modeling is associated with a different set of
requirements:
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Geoscience requirements
Geological modeling is associated with a different set of
requirements:

• Very large deformation of solid materials including

– accurate tracking of material (compositional) interfaces

– accurate tracking of history variables (e.g. τyield(ε))

– high Deborah number viscoelasticity (
O
τ term)

– evolution of oriented microstructure ( )
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Geoscience requirements
Geological modeling is associated with a different set of
requirements:

• Very large deformation of solid materials including

– accurate tracking of material (compositional) interfaces

– accurate tracking of history variables (e.g. τyield(ε))

– high Deborah number viscoelasticity (
O
τ term)

– evolution of oriented microstructure ( )

• Strongly evolving rheology

• Complex geometry emerges from simple structures
through non-linearity of rheology

• Uncertainty of material properties

– a different style of modeling (forward models not definitive)

– ensembles of models to classify regimes / inversion strategies (e.g.

Wijns et al, JSG, 2001)
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Geology 6= engineering

(1) Large deformation ?
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Geology 6= engineering

(2) Not a spectacular success ... and no longer of interest
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Geology 6= engineering

(3) Compare that with what we need to do on scales from the
whole planet to a few grains of sediment
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Geology 6= engineering

(4) Where we are presented with materials whose properties
we don’t know well at the time of deformation, or even which
of the materials were actually there at the time.



8 / 28

Geology 6= engineering

(5) Where materials have a number of nested “characteristic”
scales.
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Geology 6= engineering

(6) And where macro/microstructures may interact during
deformation to produce far-from-linear evolution.
(Computer shown for scale)
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Geology 6= engineering

(7) And where the system may localize with or without some
material evolution during shear band formation.
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Where to begin
Problems need to be

• Written in a mathematical form, i.e. the model

• Rendered finite so it can fit onto a computer

The finite version of the problem then needs to be solved

• Efficiently

• Accurately

The choice of model and solution method should suit the
physics of the problem to satisfy efficiency and accuracy !
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Finite Problems
Some problems are already finite — there is an obvious
mapping between the computational points and real objects

(1) A discrete structure — naturally finite
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Finite Problems
Some problems are already finite — there is an obvious
mapping between the computational points and real objects

(2) Granular structures — naturally finite
OK as long as we can compute all the grains
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Finite Problems
Some problems are already finite — there is an obvious
mapping between the computational points and real objects

(3) Really big grains — a finite number of stars in the galaxy,
galaxies in the universe
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Finite Problems
Some problems are already finite — there is an obvious
mapping between the computational points and real objects

(4) Atom by atom — OK for very small things
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Not-finite Problems
In other cases the computational points don’t have direct
counterparts in the physical system. Continuum models of
physical phenomena are built assuming an infinitely
divisible medium. The model must be made finite by
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Not-finite Problems
In other cases the computational points don’t have direct
counterparts in the physical system. Continuum models of
physical phenomena are built assuming an infinitely
divisible medium. The model must be made finite by

• Solving at a finite number of points (spatial)
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Not-finite Problems
In other cases the computational points don’t have direct
counterparts in the physical system. Continuum models of
physical phenomena are built assuming an infinitely
divisible medium. The model must be made finite by

• Solving at a finite number of edges/volumes (spatial)
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Not-finite Problems
In other cases the computational points don’t have direct
counterparts in the physical system. Continuum models of
physical phenomena are built assuming an infinitely
divisible medium. The model must be made finite by

• Solving with a truncated set of mathematical functions
(spectral)
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Eulerian Formulation
Sufficiently diffusive quanities can be modeled with a fixed
mesh of computational points (Dubuffet et al, 2001, GRL)

Quickly and efficiently with high resolution.
But must deal with u.∇T term at high Peclet number.
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Large Deformation & Meshes
If we want to track history, we need to track material points.
As material points move, the mesh they define distorts.
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Large Deformation & Meshes
If we want to track history, we need to track material points.
As material points move, the mesh they define distorts.

Even modest deformation can make a mesh unusable
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Large Deformation & Meshes
If we want to track history, we need to track material points.
As material points move, the mesh they define distorts.

(Beaumont & coworkers)

We actually want an immodest amount of deformation
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Large Deformation & Meshes
If we want to track history, we need to track material points.
As material points move, the mesh they define distorts.

We need to remesh . . .
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Large Deformation & Meshes
If we want to track history, we need to track material points.
As material points move, the mesh they define distorts.

We need to remesh . . .

or devise a solution strategy which does not rely on a
(distorting) mesh
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Discretization Examples
There are a great many different strategies for solving large
deformation problems.
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Discretization Examples
There are a great many different strategies for solving large
deformation problems.

• Discrete Element Methods

– E.g. Sakaguchi et al., Burbidge & Braun, the Quakes group . . .

– Meshless method

– Fracture, separation, granular materials — lots of particles needed
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Discretization Examples
There are a great many different strategies for solving large
deformation problems.

• Smooth Particle Hydrodynamics Methods

– E.g. Barton et al. . . .

– Meshless continuum method — essential boundary conditions can

be troublesome.

• FLAC

– Conceptually a hybrid between DEM and classical continuum

methods
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Discretization Examples
There are a great many different strategies for solving large
deformation problems.

• Finite Element Derived Methods

– Dynamic Remeshing

– ALE

– Natural Element Method

– Element Free Galerkin & Reproducing Kernel Methods (cf SPH)

– Lagrangian Integration Point FEM

– Point Interpolation Method

Mathematically (computationally) these all share common,
modular core — which is slow.
And meshless strategies may suffer boundary condition
issues.
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Generalization

It’s just about some computational points interacting - the
trick is to choose the right way for the points to interact
which matches the physics

O
τ /2µ + τ/2η = D′

F = kd

To produce a matrix problem something like:

Kijuj =
∑

Fi

which can be solved by some textbook method
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Strategies in sync with Physics

Consider how the forces behave, whether the system is
naturally finite
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Strategies in sync with Physics

What information the computational points carry, whether
they are material points, are there fast computational
“short-cuts” for some methods to help accelerate the
calculation (e.g. multigrid on structured grid).
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FEM
The strength of FEM is to build standardized matrix
problems from any differential equation



17 / 28

FEM
The strength of FEM is to build standardized matrix
problems from any differential equation

(1) Strong form
τij,j − p,i − fi = 0

ui,i = 0
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FEM
The strength of FEM is to build standardized matrix
problems from any differential equation

(1) Strong form
τij,j − p,i − fi = 0

ui,i = 0

(2) Equivalent weak form∫
Ω
N(i, j)τijdΩ−

∫
Ω
Ni,ipdΩ−

∫
Ω
NifidΩ = 0
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FEM
The strength of FEM is to build standardized matrix
problems from any differential equation

(2) Equivalent weak form∫
Ω
N(i, j)τijdΩ−

∫
Ω
Ni,ipdΩ−

∫
Ω
NifidΩ = 0

(3) Equivalent matrix form(
K G
GT 0

)(
u
p

)
=

(
F
0

)
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FEM
The strength of FEM is to build standardized matrix
problems from any differential equation

(3) Equivalent matrix form(
K G
GT 0

)(
u
p

)
=

(
F
0

)
(4) Where the coefficients come from a standard form

computed element by element

ke
ab =

∫
Ωe

BT
a DBbdΩe

(D is a matrix of material properties, B an incarnation of the
consitutive law). The full kab coefficients come from
summing the element contributions — That’s basically the
interaction rule for two node points, and this is the
machinery for generating it for a given continuum
expression



18 / 28

FEM
We like FEM because it’s . . .

• Flexible

– Wide variety of meshes

– Interchangeable constitutive relationships

– Robust to strong gradients in material properties

• Modular

– Plug in solvers

– Standard form for most differential equation systems

– Plug in element types

• Versatile

– Just look at all those FEM-like strategies !

But the generality comes at a price: it runs slowly.
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FEM Pros & Cons
Mesh free (and mesh-liteTM ) methods are cool, but can be
even slower, may have trouble applying boundary
conditions, and convergence proofs are not always available.

Achilles heal:
calculating everything on the fly for all elements which
means we cannot take advantage of known symmetries (cf.
typical strategies in finite differences)

But if we really use this recalculation property creatively. . .
the weakness becomes a strength
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Lagrangian Integration Point FEM
Consider the element integrals:
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Lagrangian Integration Point FEM
Consider the element integrals:

ke
ab =

∫
Ωe

BT
a DBbdΩe

These are expressed as the sum over a finite number of
sample points (cf Simpson’s rule in 1D)∫

Ωe

φdΩe ←
∑

p

wpφ(xp)
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Lagrangian Integration Point FEM
Consider the element integrals:

ke
ab =

∫
Ωe

BT
a DBbdΩe

These are expressed as the sum over a finite number of
sample points (cf Simpson’s rule in 1D)∫

Ωe

φdΩe ←
∑

p

wpφ(xp)

So why not write this:

ke
ab =

nep∑
p=1

wpB
T
a (xp)DpBb(xp)

allowing the material properties to vary at the sample point ?
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Lagrangian Integration Point FEM
And why not allow the integration points to be material
points ?
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Lagrangian Integration Point FEM
And why not allow the integration points to be material
points ?

xt+∆t
p = xt

p + ∆t
∑
nodes

vnNn(xp)

Which is ok as long as we remember to recompute
integration schemes dynamically
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Lagrangian Integration Point FEM
If this is done then we can:

• Track the entire history of the problem at the integration points

• Produce a self consistent averaging process back to the mesh

• Decouple computational point evolution and material point evolution

• Handle boundary conditions correctly

• Use meshes designed for multigrid

At the expense of:

• Speed (again)

• Inherent smoothness

• Complexity (but it’s not that bad)
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LIP — integration schemes
Material points are used as integration points∫

Ωe

φdΩe ←
∑

p

wpφ(xp)

but this means that it is not possible to work out in advance
what the locations, xp or the weights, wp for each integration
point should be. Locations are given, weights must be
calculated.



23 / 28

LIP — integration schemes
This is not such a problem for regular arrays of material
points

Where equal weights may make sense. We can make a
correspondance between local volume and particle weight.
But the particle distribution is usually not regular . . .



23 / 28

LIP — integration schemes
With uneven distributions of particles

the local volume is also distorted and probably crosses
element boundaries. In problems where there is a delicate
balance between large forces this can be an issue.
However, we know some properties of the integration
scheme
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LIP — integration schemes
The constraints can be derived from convergence conditions
for specific elements:

nep∑
p=1

wp = 2 (constant terms)

nep∑
p=1

wpxp = 0 (linear terms)

nep∑
p=1

wpx
2
p =

2

3
(quadratic terms)

nep∑
p=1

wpx
3
p = 0 (cubic terms)

(1)

which we can apply through an iterative scheme
(approximately) for a given distribution of particles
assuming an initial guess at the set of wp.
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LIP — integration schemes
On average such a procedure can be as accurate as a
standard Gaussian quadrature scheme

0 200 400 600 8000.025

0.03

0.035

Er
ro

r

Timestep

(a)

(b)

2x2 
Gauss

(c)

Although with considerably more work required.
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LIP — Coordinate Mappings
It is necessary to be able to map both from an arbitary
location in the master element domain to the element’s
global coordinate (as normal) and also from any point in the
global (distorted) element back to the master element.

eh

ez

y

x

xp

xn2xn1

xn3

xn4

2hh

2hz

h

z

-1
-1

1

1



24 / 28

LIP — Coordinate Mappings
Guess an initial value of ξp and use this to predict the global
coordinates x0

p,

ξp = (0, 0)

x0
p =

(
nen∑
n=1

Nn(ξp)xn,

nen∑
n=1

Nn(ξp)yn

)
We compute ξp through a number of corrector steps:

ξp ← ξp + β
(
eξxx

i
p + eξyx

i
p

)
/hξ

ηp ← ηp + β
(
eηxx

i
p + eηyx

i
p

)
/hη

xi+1
p =

(
nen∑
n=1

Nn(ξp)xn,

nen∑
n=1

Nn(ξp)yn

)
This is a useful coordinate system to test if a point is in an
element.
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LIP — Particle splitting
Initially small aspect-ratio local volumes do not stay that way

Which makes it inappropriate to associate a fixed local
volume to a given material point.
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LIP — Particle splitting
But a judicious splitting of particles can reduce this effect

and in some cases is absolutely necessary to avoid the
appearance of holes in the distribution of integration points
(e.g. near a stagnation point in the fluid).
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LIP — Particle splitting
One strategy for the splitting is based on the strain ellipse at
the material point

which can be calculated in many ways (such as this) but
which always produces a heavy storage burden.

but then it is also necessary to have a merging algorithm.
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Formulations using material points
In an orthotropic material (which has a unique direction) we
follow a director attached to the material points.

The contribution to the stiffness matrix depends upon the
direction of the director at the point and the material
orthotropy at that point. The director is updated from the
grid velocity gradient.

ṅi = ω̃ijnj

ω̃ij = vi,j − δij (vk,lnknl)
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Formulations using material points

In materials with history we can track any kind of clock(s) on
the particles

Many examples ! Including tracking of pressure /
temperature / time paths, non-equilibrium phase changes or
irreversible transformations, material history (strain
dependent damage), the evolution of grain-sizes during
deformation.
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Formulations using material points

Implementation of viscoelasticity (stress history required in a
viscous-based formulation)

O
τ

2µ
+

τ

2η
= D̂v + D̂e = D̂



26 / 28

Formulations using material points

O
τ is the Jaumann corotational stress rate for an element of
the continuum, µ is the shear modulus and η is shear
viscosity. D̂ is the deviatoric part of D.

O
τ= τ̇ + τW −Wτ

where W is the material spin tensor,

Wij =
1

2

(
∂Vi

∂xj

− ∂Vj

∂xi

)
The W terms account for material spin during advection
which reorients the elastic stored-stress tensor.
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Lagrangian Integration Point FEM

Example: The extension of a layered crust/mantle with
sedimentation, followed by compression. Demonstrates the
reactivation of basin structures upon inversion.
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Lagrangian Integration Point FEM

Example: mantle convection simulation with “brittle”
rheology in the lithosphere which allows the development of
a mobile surface mode (otherwise it would be in stagnant lid
mode)
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Lagrangian Integration Point FEM

Various examples of modeling and data where non-linearity
dominates the outcome.
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Progress (October 2001)
Algorithm in 2D developed and tested for

• Fluids with interfaces

• Viscous materials with history

• Viscoelastic materials / yielding

• Anisotropic viscoelastic materials

• Cosserat materials (partial)

Simple meshes, geometrical multigrid, simple boundary
conditions.
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Progress (October 2001)
Collaboration with VPAC (ACcESS partner) & Univ. of Sydney

• 3D Prototype (tested)

• Arbitrary mesh generation

• Algebraic Multigrid

• Parallel code

Work in progress . . . due mid 2002
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Progress (October 2001)
Some relevant publications

• Moresi, L. Mühlhaus, H.-B. and Dufour, F., Particle-in-cell solutions for creeping viscous flows with
internal interfaces. In Bifurcation and Localization in soils and Rocks 99. Mhlhaus, Dyskin, A. and
Pasternak, E. (ed), Balkema: Rotterdam, In Press 2001

• Moresi, L. Mühlhaus, H.-B. and Dufour, F. Viscoelastic formulation for modelling of plate tectonics. In
Bifurcation and Localization in soils and Ro cks 99. Mhlhaus, Dyskin, A. and Pasternak, E. (ed),
Balkema: Rotterdam, In Press 2001.

• Dufour, F. Mühlhaus, H-B., Moresi, L., A particle in cell formulation for large deformation in cosserat
continua, In Bifurcation and Localization in soils and Rocks 99. Mhlhaus, Dyskin, A. and Pasternak, E.
(ed), Balkema: Rotterdam, In Press, 2001

• Louis Moresi, Frédéric Dufour, Hans Mühlhaus, Mantle convection models with viscoelastic/ brittle
lithosphere: Numerical methodology and plate tectonic modeling, Pure Applied Geophys., In Press,
2001

• H-B Mühlhaus, L.N Moresi, B. Hobbs, and F Dufour, Large Amplitude Folding in Finely Layered
Viscoelastic Rock Structures, Pure Applied Geophys, In Press 2001

• Moresi, Louis, Dufour, Frédéric and Mühlhaus, Hans (2001) A Lagrangian integration point finite
element method for large deformation modeling of viscoelastic geomaterials. Journal Computational
Physics, Submitted 2001.

Mostly available at http://www.ned.dem.csiro.au/eprints


