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Outline: 

1.Tsunami as global natural hazard 

2.Tsunamigenic sources 

3.Tsunami modeling: background 

4.Tsunami modeling: applications 
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(after Gusiakov) 

Tsunami as global hazard 
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(after Gusiakov) 

Tsunami as global hazard 

NGI, 2009 

Global Assessment Report on Disaster Risk Reduction -- GAR 
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(after Gusiakov) 

Tsunami as global hazard 

NGI, 2009 

Global Assessment Report on Disaster Risk Reduction -- GAR 
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(after Gusiakov) 

Tsunami as global hazard 

What controls Tsunami distribution worldwide? 

Image from Humboldt University Berlin 

Lithospheric Plates and Distribution of Earthquakes 
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Tsunamigenic Sources 

(after Gusiakov) 

Tsunamigenic sources 
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Hebert et al. (2002) 

Landslides 

Fatu Hiva (French Polynesia) 1999 

Tsunamigenic sources 
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About 500 m run-up 

Lituya Bay (Alaska, USA) 1958 

after G. Pararas-Carayannis 

Landslides Tsunamigenic sources 
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Bryn et al. (2005) 

One of the biggest historic slides (2400 km3).  

Slides of this size are extremely rare but re-occur in geological time scales. 

Storegga Slide (Norway) 8200 B.C. 

Landslides Tsunamigenic sources 
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Landslides Tsunamigenic sources 

Gas hydrates can destabilize submarine slopes 

Natural gas hydrates are solid 
crystalline compounds 
composed of molecules of 
natural gas trapped in cages of 
water molecules. 
Looks like ice and has similar 
density. 

That's why they are important for us! 
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Volcanic eruptions Tsunamigenic sources 

Krakatau, August 26, 1883 
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Asteroid impacts Tsunamigenic sources 
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Elements of plate tectonics 

USGS 

Earthquakes Tsunamigenic sources 
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Mechanism of interplate subduction earthquake 

Earthquakes Tsunamigenic sources 
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Mechanism of interplate subduction earthquake 

Earthquakes Tsunamigenic sources 
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Mechanism of interplate subduction earthquake 

Earthquakes Tsunamigenic sources 
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Mechanism of interplate subduction earthquake 

Earthquakes Tsunamigenic sources 
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Tsunami modeling 

3 steps in Tsunami modelling 

 

• Tsunami generation 

• Tsunami propagation in deep ocean 

• Wave run-up and coastal inundation 

Imamura (2005) 
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Modeling sea surface displacement 
Rectangular fault 

M0 =  L W U 

Model fault parameters: 
Length – L 
Width – W 
Dip angle –  
Depth – D 
Slip – U 
Rake angle –  
Shear modulus (rigidity)   
 

Uz

W

)

(lon,lat)
Epicentrum

D{

Trench

U



Tsunami modeling Generation 



A. Babeyko, 9 Mar 2016 Uni Potsdam, Course on Geodynamic Modeling 

 Analytical solution for the homogeneous elastic half-space (Okada, 1985) 

Model parameters: 
 
1) Fault geometry 
L, W,  D,, U,  
 
2) Position of obs. point 
x,y 
 
3) Parameters of the media 
  

 

Analytical expressions for Ui(x,y), i =(x,y,z) 

Tsunami modeling Generation 
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Scaling laws 

Empirically calibrated relations between earthquakes parameters 

We would like to know 3 fault parameters: 
length (L), width (W) and slip (U) from the 
seismic moment (M0) only. 

If, e.g.,   L = L(M0) and W = W(M0),  
 
then:      M0 =   L(M0)  W(M0)  U 
 
and:      U = M0 / (   L(M0)  W(M0) ) 

M0 =  L W U 

Tsunami modeling Generation 
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Measured: 

M0, location 
 
Finite fault parameters that we do need: 
Length – L 
Width – W 
Dip angle –  
Depth – D 
Slip – U 
Rake angle –  
Shear modulus (rigidity)   
 

 

 
 
 
M0 + scaling laws 
M0 + scaling laws 
subduction zone geometry 
location + subduction zone geometry 
M0 + scaling laws 
assumed 
material constant 
 

M0 =  L W U 

: crustal rocks – 30-40 GPa, dry olivine – 74 GPa; 

Tsunami modeling Generation 
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Scaling laws: physical reasoning 

• Rupture can grow in all directions.  
Hence: L ~ W 

 
• Max. strain  ~ U/W is related to rock strength. 

Hence: U ~ W 
 
• Thus one might expect that: M0 ~ L3 
 

M0 =  L W U 

Geller (1976) 

But, for large earthquakes these relations should break down! 

• W cannot grow as far as L can do: temperature increases with depth – 
material is no more brittle 

• Similarly, U may stop growing to keep strain 

• Hence we might expect that for large events: M0 ~ L 

Tsunami modeling Generation 
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Scaling laws 

Calibrations of Wells and Coppersmith (1994) 

M0 =  L W U 

Wells, D.L., Coppersmith, K.J. (1994). New empirical relationships among magnitude, rupture length, 
rupture width, rupture area, and surface displacement. Bull. Seism. Soc. Am. 84, 974-1002. 

Tsunami modeling Generation 
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Quick fault model: an example 

L and W from 
scaling laws: 
 
L ~ 375 km 
W ~ 50 km 

Event with Mw = 8.5  

Slip:   
U = M0 / ( L W) 
 
U ~ 13 m 

M0 =  L W U 

Tsunami modeling Generation 
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Vertical displacement 

1D- perspective 

W

)

(lon,lat)
Epicentrum

D{

Trench

U



Remark: here and below Ztop=D 

Tsunami modeling Generation 
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Tsunami modeling Propagation 
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uuu
u 2


 P

dt
- 3D Navier-Stokes equation 

Tsunami modeling Propagation 

0u - mass conservation (incompressible) 

Full 3D model: 
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Tsunami is a long wave ! 

Long-wave 

Vx  f(z) 

Short-wave 

Vx = f(z) 

Tsunami modeling Propagation 
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Tsunami modeling Propagation 
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Tsunami modeling Propagation 
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Gjevik (2004) 

Tsunami modeling Propagation 
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Tsunami wave characteristics 

Tsunami modeling Propagation 
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Shallow-water equations: Numerical aspects 

Numerical schemes: 

 

(1) Finite differences on structural grids 
Pro: easy to implement, robust, easy grids, quick, straightforward 

parallelization of computations 

Contra: constant resolution, need for nested grids in coastal 

regions 

Examples: TUNAMI-family, MOST, FUNWAVE 

 

(2) Finite elements on unstructural grids 
Pro: single computational domain for deep-ocean propagation 

and inundation 

Contra: time consuming, stability problems, hard to program, 

complex grids 

Examples: TsunAwi, ANUGA, Uni Bologne  

Tsunami modeling Propagation 
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 Finite differences on structural grids 

Imamura (1996) 

Tsunami modeling Propagation 
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24 Dec 2004 

Tsunami modeling Propagation 
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 Nested grids to increase resolution in critical places 

Harig et al. (2008) 

Tsunami modeling Propagation 
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 FEM calculations 

Harig et al. (2008) 

 GITEWS Indonesian grid: 

> 4 Mio elements with 

resolution down to 50 m 

Tsunami modeling Propagation 
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Harig et al. (2008) 

Tsunami modeling Propagation 

 FEM calculations 

 GITEWS Indonesian grid: 

> 4 Mio elements with 

resolution down to 50 m 
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Tsunami modeling Coastal inundation and runup 

Comments on simulation of wave run-up and coastal 
inundation 

 

 

• Most demanding to data resolution and accuracy as well as to 
computational cost 

 Global bathymetry and topography datasets not enough 

 Grid resolution ~10 m: tens of million of nodes 

• High-resolution local data on topography often not available 

• Approximations from deep water (~ 50-100 m depth) is commonly 
used 

 Green’s law: h2 = h1*(d2/d1)
1/4 

 Use precomputed 1D characteristic profiles 
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Numerical Modeling for: 

 

1. Tsunami early warning 

2. Tsunami hazard assessment 

3. Integrative testing of the TEWS 

4. Personnel teaching and training 

Tsunami modeling 
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Numerical Modeling for: 

 

1. Tsunami early warning 

2. Tsunami hazard assessment 

3. Integrative testing of the TEWS 

4. Personnel teaching and training 
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Modeling for Tsunami Early Warning … 

… to understand a physical process. 

 

To get a consistent picture of what has happened, 

what is still going and what is expected to be … 

Tsunami modeling Modeling for early warning 
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Wave at buoy 

Tsunami modeling Modeling for early warning 
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Tsunami modeling Modeling for early warning 
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Tsunami modeling Modeling for early warning 
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Tsunami modeling Modeling for early warning 

Tsunami Early Warning Systems: Principles of 

Operation 

Near-field (Japan, Indonesia, Chile,…): 

 extremely short warning times 

 needs source position, geometry and slip distribution 

Far-field (PTWC, India, Australia,…): 

 there is some time to take decision 

 more tolerant to the source: important are Mw and orientation 
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Kowalik (2001) Basic relations between tsunami calculations and their physics 

Far-field: Pacific Tsunami Warning Center 

Far-field: PTWC 

Titov et al. (2005) 

New: SIFT – Short-term Inundation Forecasting for Tsunamis 

based on concept of unit sources and their Green’s functions 
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Kowalik (2001) Basic relations between tsunami calculations and their physics 
Far-field: PTWC 

from presentation of McCreery (2005) 

New: SIFT – Short-term Inundation Forecasting for Tsunamis 
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Kowalik (2001) Basic relations between tsunami calculations and their physics 
Far-field: PTWC 

from presentation of G. Freyer (2006) 

New: SIFT – Short-term Inundation Forecasting for Tsunamis 

•Each ‘fault box’ (labeled a0..an,  b0…bn below ) is an independent  source location.  One ~7 GByte 
dataset  is computed for each box, using an Mw 7.5 , 1 m slip seismic source. This defines a ‘unit 

source’. 

•A weighted combination of stored data from several sources produces the final wave prediction we 

will use during an event. 

•The ‘best’ combination is obtained by matching prediction to real time DART data.  That’s the 

inversion step 
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Kowalik (2001) Basic relations between tsunami calculations and their physics 
Far-field: PTWC 

New: SIFT – Short-term Inundation Forecasting for Tsunamis 

•One 16 min x 16 min full Pacific 

‘snapshot’ is stored for each minute of 

wave evolution starting at event time (t = 

0) and ending 1 full day later. So, 1441 

‘snapshots’ 

•3 variables per cell and roughly 200,000 

rectangular cells cover the Pacific from 

50S to 62N.   This requires 0.6 million 

stored output values for each one-minute 

snapshot. 

•  Multiplying the above by 1441 one 

minute snapshots gives about 7 Gbytes of 

storage space required for each wave 

source.  

east 

north 

t = 1440 minutes 

t = 0 minutes 

t = 1 minutes 

t = 2 minutes 

time 

from presentation of G. Freyer (2006) 
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Kowalik (2001) Basic relations between tsunami calculations and their physics 
Far-field: PTWC 

New: SIFT – Short-term Inundation Forecasting for Tsunamis 

from presentation of G. Freyer (2006) 
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Kowalik (2001) Basic relations between tsunami calculations and their physics 
Far-field: PTWC 

New: SIFT – Short-term Inundation Forecasting for Tsunamis 

After the best  16 min x 16 min solution is 

obtained, the data is used to ‘drive’ more finely 

meshed coastal regions for prediction of warning 

point runup. 

16 x 16 min  

coarse mesh 

from presentation of G. Freyer (2006) 
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Kowalik (2001) Basic relations between tsunami calculations and their physics 
Far-field: PTWC 

from presentation of McCreery (2005) 

New: SIFT – Short-term Inundation Forecasting for Tsunamis 
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Kowalik (2001) Basic relations between tsunami calculations and their physics 

Satake (2005) 

Near-field: Japan 
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Kowalik (2001) Basic relations between tsunami calculations and their physics 

Databank of virtual tsunamis 

Near-field: Japan 

Furumoto et al. (1999) 
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Kowalik (2001) Basic relations between tsunami calculations and their physics 

Satake (2005) 

Near-field: Japan 
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Tsunami modeling Modeling hazard assessment 

Numerical Modeling for: 

 

1. Tsunami early warning 

2. Tsunami hazard assessment 

3. Integrative testing of the TEWS 

4. Personnel teaching and training 
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• Similar to earthquakes, tsunamis will take place in the future worldwide 

and collect their toll 

 

• To minimize negative impact, society needs preparedness and early 

warning 

 

• Preparedness starts from hazard assessment 

Tsunami modeling Modeling hazard assessment 
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Tsunami hazard assessment:  2 approaches 

Deterministic scenario-

based  

 

• Worst case scenarios 

• Does not provide 
recurrence periods of 
tsunamis 

• Challenges high-
resolution modeling 

Probabilistic approach  

• Begins from analysis of 
seismic statistics 

• Huge number of  
scenarios aggregated 

• Provides recurrence 
periods of tsunamis of 
different wave heights 
(hazard curves) 

 

Oriented to 

engineering and risk 

assessment 

Oriented at 

engineering and risk 

assessment 

Oriented at coastal 

planning and early 

warning 

Tsunami modeling Modeling hazard assessment 
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Accumulated seismic moment deficit 
after Chlieh et al. (2008) 

Central Sumatra: Inter-plate coupling as revealed by 
geodetic and coral data 

Full locking during ~200 years 

results in about: 

200 y * 5.5 cm/y = 11 m 

accumulated slip. 

Chlieh et al. (2008) 

Deterministic tsunami hazard assessment 
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Bathymetry chart across the trench A A’ 

A 

A’ 

Siberut 

Trench 

Padang 

Bathymetry off Padang: An important player 

Deterministic tsunami hazard assessment 
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Deterministic tsunami hazard assessment 
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Deterministic tsunami hazard assessment 
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Deterministic tsunami hazard assessment 

Taubenböck et al. 2013 

Flow depth Wave energy 

High-resolution inundation modeling for city of 

Padang, Sumatra (Indonesia) 
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Numerical Modeling for: 

 

1. Tsunami early warning 

2. Tsunami hazard assessment 

3. Integrative testing of the TEWS 

4. Personnel teaching and training 

Tsunami modeling Modeling for testing 
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<<Software>> TSB 

H(t) 

<<Software>> 

DSS 

<<Software>> TSB 

<
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B
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<
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B
 

Buoy System 

Software Hardware 
Scenario(s) 

ID 

GTS System 

Software Hardware 
Dx,y,z(t) 

Mw+Epicenter 

H(t), Dx,y,z(t) 

Simulation System 

Scenario matching 

Seismic System 

Software Hardware Mw+Epicenter 

Simplified System Architecture 

Tsunami modeling Modeling for testing 
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Mw=7.4 

GPS 

Synthetic Earthquake 

Complete synthetic scenarios of rupture and corresponding sensor responses 

Seismic 

0 40 80 120 160 200

Time, min

-0.02

-0.01

0

0.01

0.02

S
S

H
, 

m

Buoy 5

Buoy3

Buoys 

Tsunami modeling Modeling for testing 
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<<Software>> TSB 
Critical: two simulations  

compete with each other.  

H(t) 

<<Software>> 

DSS 

<<Software>> TSB 
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Buoy System 

Software Hardware 

Scenario(s) 

ID 

Scenario Player 
RuptGen+WaveGen 

calculate synthetic 

signals at buoys and 

GPS 

Mw+Epicente

r 

H(t), Dx,y,z(t) 

Mw+Epicente

r 

GTS System 

Software Hardware 
Dx,y,z(t) 

Dx,y,z(t) 

H(t) 

X 

X 

User Input 

Parameters 

Mw+Epicenter 

H(t), Dx,y,z(t) 

Simulation System 

Scenario matching 

Seismic System 

Software Hardware Mw+Epicenter 

Mw+Epicente

r 

X 

Tsunami modeling Modeling for testing 

Simulated sensor data are realistic and consistent with each other in time and magnitude. 

Simulation is probably the only way to supply TSB and DSS with feeds of fully consistent sensor data of various nature. 
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<<Software>> TSB 
Critical: two simulations  

compete with each other.  

H(t) 

<<Software>> 

DSS 

<<Software>> TSB 
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Buoy System 

Software Hardware Scenario(s) 

ID 

Scenario Player 
RuptGen+WaveGen+SeisGen 

calculate synthetic signals 

at buoys and GPS 

Mw+Epicente

r 

H(t), Dx,y,z(t), 

Vx,y,z(t) 

Mw+Epicente

r 

GTS System 

Software Hardware 
Dx,y,z(t) 

Dx,y,z(t) 

H(t) 

X 

X 

User Input 

Parameters 

Mw+Epicente

r 

H(t), Dx,y,z(t) 

Simulation System 

Scenario matching 

Seismic System 

Software Hardware Mw+Epicente

r 

Vx,y,z(t) 

X 

Simulated sensor data are realistic and consistent with each other in time and magnitude. 

Simulation is probably the only way to supply TSB and DSS with feeds of fully consistent sensor data of various nature. 

Tsunami modeling Modeling for testing 
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Numerical Modeling for: 

 

1. Tsunami early warning 

2. Tsunami hazard assessment 

3. Integrative testing of the TEWS 

4. Personnel teaching and training 

Tsunami modeling Modeling for teaching and training 
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Probabilistic approach: seismic PTHA 

a. Based on extensive local catalogs of tsunami: empirical  

 

b. Based on earthquake catalogs and tsunami simulations: 

computational 

a. 

b. 

Probabilistic tsunami hazard assessment 
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Steps of probabilistic analysis 

Probabilistic tsunami hazard assessment 
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Seismic source zones in Central America 

1. Outer rise and crustal upper 

plate 

Probabilistic tsunami hazard assessment 

2. Subduction plate interface 3. Intra-slab 

Based on seismic catalog: CAT2011  
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Deriving parameters for Monte-Carlo simulations 

Gutenberg-Richter type magnitude–frequency 

relation: 

log N= a-bM 

𝐏 𝐄 > 𝐌𝐢 =
𝑒−𝛽(𝑀𝑖) − 𝑒−𝛽(𝑀𝑚𝑎𝑥)

𝑒−𝛽(𝑀𝑚𝑖𝑛) − 𝑒−𝛽(𝑀𝑚𝑎𝑥)
 

Probabilistic tsunami hazard assessment 

Mc: magnitude of completeness of seismic catalogue 

β=b*ln10 
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Synthetic catalog for 100 000 years 

Probabilistic tsunami hazard assessment 
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Selecting Points Of Interest (POI) 

Probabilistic tsunami hazard assessment 
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Computing wave heights at POIs for all the sources 

Probabilistic tsunami hazard assessment 

Extensive computational task: Hunderts of thousands of scenarios 

 

Different approaches: 

• Using pre-computed linear Green‘s Functions 

• Direct computations of offshore amplitudes with fast (linear) 

numerical algorithms 
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Hazard results: hazard curves @ selected POIs 

Probabilistic tsunami hazard assessment 
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Wave heights expected @ different return periods 

Probabilistic tsunami hazard assessment 
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Wave heights expected @ different return periods: 

Another view 

Probabilistic tsunami hazard assessment 


