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Abstract

TEMSPOL is an open MATLAB code suitable for calculating temperature and lateral anomaly of density

distributions in deep subduction zones, taking into account the olivine to spinel phase transformation in a self-

consistent manner. The code solves, by means of a finite difference scheme, the heat transfer equation including

adiabatic heating, radioactive heat generation, latent heat associated with phase changes and frictional heating.

We show, with a few simulations, that TEMSPOL can be a useful tool for researchers studying seismic velocity, stress

and seismicity distribution in deep subduction zones. Deep earthquakes in subducting slabs are thought to be caused by

shear instabilities associated with the olivine to spinel phase transition in metastable olivine wedges. We investigate the

kinematic and thermal conditions of the subducting plate that lead to the formation of metastable olivine wedges.

Moreover, TEMSPOL calculates lateral anomalies of density within subducting slabs, which can be used to evaluate

buoyancy forces that determine the dynamics of subduction and the stress distribution within the slab.

We use TEMSPOL to evaluate the effects of heat sources such as shear heating and latent heat release, which are

neglected in commonly used thermal models of subduction. We show that neglecting these heat sources can lead to

significant overestimation of the depth reached by the metastable olivine wedge.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Subcrustal earthquakes widely occur within subduct-

ing slabs. Shallow and intermediate events (depths

o300 km) are likely produced by brittle fracturing and

frictional sliding on pre-existing faults (Scholz, 1990)

and possibly enhanced by dehydration embrittlement

(Meade and Jeanloz, 1991). At depths > 300 km; brittle

and frictional processes are likely inhibited by enormous
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lithostatic pressures. Nevertheless, more than 20% of

earthquakes with magnitude greater than 5 occur at

depths greater than 300 km (Frohlich, 1989). Indepen-

dent solutions to the paradox of the occurrence of deep

earthquakes have been proposed by two groups of

scientists on the basis of deformation experiments on

germanate olivine and ice (Green et al., 1990; Kirby

et al., 1991). According to both groups, deep earth-

quakes are caused by shear instabilities associated with

olivine to spinel transformation. This phase transforma-

tion may be kinetically hindered in a cold slab

descending into the mantle transition zone (e.g., Rubie,

1984), thus creating a wedge-shaped zone of metastable

olivine that can persist down to about 660 km (Kirby

et al., 1996). This might explain the occurrence of deep

earthquakes and the largely recognised correlation of
d.
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maximum depth of seismicity with the product of the

age of the subducting lithosphere and the subduction

velocity (e.g., Kirby et al., 1996).

Since olivine metastability is a temperature-controlled

process, accurate and realistic thermal models of subduc-

tion zones are necessary for a better comprehension of

deep seismicity. Moreover, temperature and phase changes

are known to control density distribution within subduct-

ing slabs and consequently to influence the dynamics of

subduction (Bina, 1996; Schmeling et al., 1999).

The role of subduction kinematics on the slab

temperature distribution has been widely investigated

with analytical (e.g., McKenzie, 1969) and numerical

(e.g., Minear and Toks .oz, 1970) thermal models since

the early discovery of plate tectonics. We aim at

improving important aspects of existing models and

provide a useful tool for researchers studying deep

subduction zones, with interests in seismology, meta-

morphism, seismic velocity distribution and dynamics of

subduction zones. The purpose of this work is, therefore,

to provide an open MATLAB code suitable for

calculating temperature, density anomaly and mineral

phases (olivine and spinel) distribution in deep subduc-

tion zones, taking into account phase transformations in

a self-consistent manner. Our code is intended to be

simple and easy to apply to real subduction zones.

Moreover, we intend to evaluate the effects of heat

sources such as radioactive or shear heating and latent

heat release, which are neglected in commonly used

thermal models (e.g., Stein and Stein, 1996).
2. Previous models

Among existing thermal models of deep subduction

we can distinguish two different types of approach.

Some models compute the temperature distribution only

within the slab, which is assumed to descend in an

isothermal (e.g., McKenzie, 1969) or in a adiabatically

heated (e.g., D.assler and Yuen, 1996; Devaux et al.,

1997, 2000) mantle. The influence of the surrounding

mantle is accounted for as a boundary condition.

A second set of models (e.g., Minear and Toks .oz,

1970; Toks .oz et al., 1971; Turcotte and Schubert, 1973;

Stein and Stein, 1996) includes mantle–slab thermal

interactions and allows for the calculation of accurate

temperature distributions in both slab and surrounding

mantle. Minear and Toks .oz (1970) and Toks .oz et al.

(1971) developed a numerical quasi-dynamic thermal

model that included adiabatic heating, radioactive heat

generation, phase changes and frictional heating. Stein

and Stein (1996) further modified this model to

introduce a temperature distribution of the oceanic

lithosphere prior to subduction given by the plate model

GDH1 (Stein and Stein, 1992). Despite this improve-

ment, the model by Stein and Stein (1996) does not
include shear or radiogenic heating or latent heat

released during phase changes. This model is commonly

used to investigate the conditions for the formation of

metastable olivine wedges (Kirby et al., 1996) and the

effects of buoyancy forces arising from density contrasts

related to phase transformations (e.g., Bina, 1997;

Marton et al., 1999). These models adopt a kinematic

approach, i.e. a pre-defined velocity field is imposed. In

contrast, dynamic models of subduction calculate the

velocity field solving the coupled equations of conserva-

tion of mass, momentum and energy (e.g., Schmeling

et al., 1999; Tezlaff and Schmeling, 2000), and include

buoyancy forces due to phase transformation. Dynamic

models are physically more self-consistent and provide a

better understanding of subduction processes. However,

they are more complex and difficult to apply to real

subduction zones. Therefore, we preferred to follow a

kinematic approach in order to create a simple code

adequate to study subduction zones where basic input

parameters (age of subducting lithosphere, dip and

velocity of subduction) are known.

Our thermo-kinematic model improves some aspects

of the above-mentioned works since it includes the main

heat sources recognised in subduction zones: adiabatic

heating, radioactive heat generation, phase changes and

frictional heating. Our model uses, as initial temperature

for the lithosphere entering the subduction zone, the

thermal plate model GDH1 (Stein and Stein, 1992).

Moreover, the model calculates in a self-consistent way

the location of the olivine to spinel phase transition, thus

permitting the calculation of an accurate distribution of

lateral anomalies of density.
3. The model

A thermo-kinematic model is calculated by solving the

2D heat equation given by

1 þ
LT

cP

qb
qT

� �
qT

qt
þ vx

qT

qx
þ vz

qT

qz

� �

¼
K

rcp

q2T

qx2
þ
q2T

qz2

� �

� vz
ag

cp

Tabs þ
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cp

qb
qz

� �
þ

H þ Ash

rcp

; ð1Þ

where LT is the latent heat due to the olivine–spinel

transformation, cP is the heat capacity, b is the fraction

of spinel, T is the temperature, t is time, x and z are the

coordinates, vx and vz are the horizontal and vertical

components of the velocity, K is the thermal conductiv-

ity, r is the density, a is the coefficient of thermal

expansion, g is the acceleration of gravity, Tabs is the

absolute temperature, H is the radiogenic heat produc-

tion rate and Ash is the shear heating rate. The values of

the parameters used are listed in Table 1.
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Table 1

Definition of parameters common to all calculations

Symbol Meaning Value

K Thermal conductivity 3:2 W m�1 K�1

cp Specific heat 1:3 � 103 J K�1 kg�1

a Thermal expansion

coefficient

3:7 � 10�5 K�1

H Radiogenic heat

production rate (for

cont. crust)

8 � 10�7 W m�3

r0 Density of the

lithospheric mantle at

T ¼ 0�C

3400 kg m�3

Drol2sp Density change due to

ol–sp phase transition

181 kg m�3

L Lithospheric thickness 95; 000 m

T0 Temperature at the base

of the lithosphere

1450� C

g Gravitational

acceleration

9:8 m s�2

0 Subduction dip angle 60�
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Fig. 1. Schematic diagram illustrating model domain and

applied boundary conditions. Velocity field imposed to simulate

subduction is updated as slab penetrates into surrounding

mantle. Small points indicate nodes of finite difference grid.
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The terms on the left-hand side represent the rate of

heat change due to the temperature change at a fixed

point and advection. The first term on the right-hand

side represents heat conduction, the term containing Tabs

describes the adiabatic heating, that containing LT

represents the latent heat of the olivine to spinel

transformation, and the last term accounts for radio-

genic and dissipative heating. For simplicity, ‘spinel’ is

here used indistinctly for wadsleyite and/or ringwoodite

because of their similar densities.

The model extends vertically to the base of the upper

mantle (Fig. 1) where the origin of the vertical
coordinate is located. The initial thermal distribution

of the oceanic lithosphere is calculated with the thermal

plate model GDH1 of Stein and Stein (1992):

Tlitðz; t0Þ ¼TL
za þ L � z

L
þ
XN
n¼1

2

np
sin

npðza þ L � zÞ
L

� � 

� exp �
n2p2Kt0

rcpL2

� ��
; ð2Þ

where t0 is the time elapsed since the formation of the

lithosphere, za and TL indicate location and temperature

of the base of the lithospheric plate, and L is the

lithospheric thickness. Our code also includes the

possibility of simulating continental subduction, with

an initial geotherm for the crust and lithospheric mantle

given by the steady-state solution of the heat conduction

equation

TcrustðzÞ ¼ �
H

K
ðza þ L � zÞ2 þ

TL

L
�

H

KL
h2

c þ
2H

K
hc

� �
� ðza þ L � zÞ; ð3Þ

where hc is the crustal thickness. This relation assumes

constant heat production limited to the crust and a

temperature T ¼ 0�C at the surface. The initial tem-

perature for the lithospheric mantle in the continental

case is given by

Tlit mantleðzÞ ¼
TL

L
�

H

KL
h2

c

� �
ðza þ L � zÞ þ

H

K
h2

c : ð4Þ

We assume the following adiabatic initial temperature

profile for the asthenosphere:

TðzÞ ¼ TL exp
ga
cp

ðza � zÞ
� �

; ztr2ozpza: ð5Þ

We also include a total temperature increase of DT ;
caused by the latent heat released during the olivine to

spinel phase change, which initiates at ztr2 and is

completed at ztr1 (see Fig. 1). In this interval the

temperature increase is given by (Turcotte and Schubert,

2002)

DT ¼
LT

cp

: ð6Þ

We assume that this increase occurs linearly from a

temperature Tztr2 at ztr2 to Tztr1 at zir1:

TðzÞ ¼
DT

ztr2 � ztr1
ðztr2 � zÞ þ Tztr2; ztr1pzpztr2: ð7Þ

In the underlying transition zone the initial temperature

is given by

TðzÞ ¼ ðTztr2 þ DTÞ exp
ga
cp

ðztr1 � zÞ
� �

;

0pzpztr1: ð8Þ

In order to find the depth at which phase transforma-

tions begin and end, we have followed the approach

described by Schmeling et al. (1999) and Tezlaff and
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Fig. 2. Simplified disequilibrium (kinetic) phase diagram of

olivine–spinel transition showing lines of 1% and 99% spinel

fraction as simplified by Schmeling et al. (1999). Thick lines

represent characteristic temperature paths within a cold slab, a

warmer slab and undisturbed mantle.
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Schmeling (2000). Instead of solving the kinetic equa-

tions of phase transformation we adopt a simplified

phase diagram (Fig. 2). We have incorporated in our

modelling the simplified phase diagram of Schmeling

et al. (1999) from original data by Akaogi et al. (1989)

and Rubie and Ross (1994). The 1% and 99% lines

separate the olivine and spinel regimes. The vertical lines

represent the transition from metastable olivine into

spinel and are only crossed by the geotherms of cold

slabs (Fig. 2). The shallower limit of the interval of

phase transformation within the undisturbed mantle

ðztr2Þ is given by the intercept between the asthenosphere

initial geotherm (Eq. (4)) and the shallower straight line

of the phase diagram. ztr1 is then obtained by substitut-

ing Tztr2 þ DT into the equation of the phase transition

deeper straight line. This diagram is also used to

compute the fraction of spinel ðbÞ and its derivatives at

any temperature and depth. For the sake of simplicity, b
is assumed to change linearly from b ¼ 0 in the olivine

and metastable olivine field to b ¼ 1 in the spinel field.

We assume the following relation for lateral anomaly

of density (with respect to an unperturbed column) due

to thermal expansion and phase changes:

Dr ¼ ðr0 þ Drol2spDbÞð1 � aðT � T0ÞÞ; ð9Þ

where r0 is the density at zero temperature, Drol2sp

is the density increase caused by the olivine to spinel

phase transition, Db is the contrast of fraction of

spinel with respect to an unperturbed column with a

geotherm T0: No density changes induced by high

pressure–low temperature metamorphism are taken into

account.

The applied thermal boundary conditions (Fig. 1) are:

T ¼ 0�C at the surface, null horizontal heat flux at

the lateral boundaries and constant vertical heat flow at
the base of the model. The latter is calculated as the

product between the vertical gradient of the initial

geotherm at the base of the model and the thermal

conductivity.

In our thermo-kinematic approach the velocity field

(Fig. 1) is imposed and defined by the subduction

velocity vs and the slab dip y: In the corner area (shaded

in Fig. 1), where the plate begins to dip into the mantle,

the velocity field is given by

vx ¼ vs
z � zaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � x0Þ
2 þ ðz � zaÞ

2
q ;

vz ¼ vs
x � x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx � x0Þ
2 þ ðz � zaÞ

2
q ; ð10Þ

where x0 is the horizontal coordinate of the subduction

knee (see Fig. 1). In the subducting slab it is given by

vx ¼ vs cos y; vz ¼ vs sin y: ð11Þ

The modelled region is divided into a 2D grid with

horizontal and vertical spacing Dx and Dz; with Dx ¼
Dz cos y in order to force grid nodes to lie on the edges

of the slab. At each time step p, the position (B–B0 in

Fig. 1) of the bottom edge of the slab (which was located

along A–A0 at t ¼ 0) is computed, and the slab velocity

field (Eq. (11)) is applied to the nodes reached by

line B–B0:
We use the following expression (Turcotte and

Schubert, 2002) for calculating the shear heating rate:

Ash ¼ t
vs

w
ð12Þ

where t is the shear stress and w is the thickness of the

shear zone. Optionally, the code incorporates the

procedure proposed by Ponko and Peacock (1995) of

distributing shear heating within a 2Dx wide zone

centred on the interface between the slab and the

overlying mantle.

The finite difference formulation of the energy

equation (Eq. (1)) is developed in Appendix A. We have

applied the alternating direction implicit (ADI) method.

The resulting equations are solved by applying the

Thomas algorithm, as shown in Appendix B. Since the

velocity field is updated as the slab penetrates into the

mantle, the numerical scheme applied is not stable for

every combination of Dt; Dx and Dz; the time step is

internally computed by the code in order to ensure

stability.
4. Some simulations

We have performed several calculations to show the

code behaviour for a wide variety of subduction condi-

tions. Fig. 3 shows the calculated temperatures and the

location of the olivine–spinel (1% and 99%) transfor-

mation obtained for the cases of slow subduction of a
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Fig. 3. Temperature (�C; contours every 200�C) distributions calculated with (a) a model of slow subduction of a warm (30 Myr old)

oceanic lithosphere after 32 Myr and (b) fast subduction of a cold (120 Myr old) oceanic lithosphere after 6:4 Myr: Subduction

velocities are (a) 2 cm year�1 and (b) 10 cm yr�1: Position of 1% and 99% olivine–spinel transformation contours are shown by thin

dashed lines.
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warm (young) oceanic lithosphere and fast subduction

of a cold (old) oceanic lithosphere, after 32 and 6:4 Myr

of subduction, respectively. Values assumed for the

velocity of subduction are 2 and 10 cm yr�1 and ages are

30 and 120 Myr; respectively. The values of the thermal

parameter f; calculated as the product of the vertical

component of the subduction rate and the age of the

subducting lithosphere, are 520 and 10; 392 km; respec-

tively. A latent heat of phase transformation of LT ¼
90 kJ kg�1 (Turcotte and Schubert, 2002), and no shear
heating or radiogenic production are considered in both

cases.

Both models show (Fig. 3) lower temperature in the

slab interior with respect to the slab boundaries.

Moreover, slabs with high thermal parameters show

lower temperatures at fixed depths. Fig. 3 clearly shows

the influence of subduction kinematics and pre-subduc-

tion thermal state of the lithosphere on the position of

the olivine to spinel phase change. In slow and warm

subduction zones (Fig. 3a), the phase change is
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shallower in the slab than in the surrounding mantle,

due to depressed isotherms in the slab and to the slope of

the equilibrium curve (Fig. 2), and reaches shallowmost

depths in the core of the slab. Colder and faster slabs

(Fig. 3b) also show a shallowing of the transformation

depth within the slab, but the innermost portions of the

slab show a deepening of the transition due to the fact

that the temperature path in this region enters the

metastable olivine field (Fig. 2). In this case, the 600�
isotherm, which controls the initiation of metastable

olivine to spinel transformation, reaches maximum

depths of about 545 km and the conditions for the

formation of a wedge of metastable olivine are attained.

Deep seismicity is therefore expected to occur for

subduction processes with these kinematic and initial

thermal conditions.

The distributions of lateral anomalies of density

calculated for both models are shown in Fig. 4. Down
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to depths of about 300 km; slow slabs show lower

densities contrasts than fast slabs, due to higher

temperatures. At depths greater than 300–350 km; the

shallowing of the olivine to spinel transition within the

slab produces a dramatic increase of density in the case

of slow subduction of a young plate (Fig. 4a). A negative

buoyancy force arises from this positive density con-

trast. In contrast, it may be noted that the presence of a

metastable olivine wedge in cold and fast slabs induces a

remarkable lowering of density in the innermost

portions of the slabs with respect to the surrounding

spinel phase. The resulting positive buoyancy can

significantly counteract the negative buoyancy men-

tioned before, thus producing the so-called ‘parachute

effect’ (Kirby et al., 1996; Schmeling et al., 1999; Tezlaff

and Schmeling, 2000).

Fig. 5 shows the lateral anomalies of density resulting

from subduction of continental lithosphere, after 4 Myr

with a velocity of subduction of 5 cm yr�1: A constant

density of 2800 kg m�3 has been assumed for a 30 km

thick continental crust. For simplicity, we have not

included density changes due to metamorphism, but

common phase diagrams can be easily incorporated in

TEMSPOL. The high negative density anomaly in the

subducted crust causes a positive buoyancy force that

opposes subduction, which is then only expected to

continue if the continental slab is pulled by a deeper

oceanic portion of the slab.

Heat sources such as shear heating and latent heat

release are often neglected in thermal models of

subduction zones. TEMSPOL permits to include such

heat sources and to evaluate their contribution to the

thermal state of subduction zones. Fig. 6 shows the

influence of latent heat and shear heating on the
geometry of the metastable olivine wedge, for the model

of fast subduction of a cold slab (same parameters as

Figs. 3b and 4b). We have considered a shear stress t ¼
30 MPa and a thickness of the shear zone w ¼ 2Dx; to

obtain with Eq. (12) a shear heating rate of Ash ¼
9:5 mW m�3: We show that neglecting these heat sources

can lead to significant overestimation (about 85 km in

the case shown in Fig. 5) of the depth reached by the

metastable olivine wedge, and thereby of the predicted

maximum depth of seismicity.
5. Discussion

We have presented here a code suitable for calculating

temperature, mineral phases and density anomaly

distribution in deep subduction zones taking into

account the olivine–spinel phase transformation in a

self-consistent manner. With respect to commonly used

thermal models, which neglect shear or radiogenic

heating or latent heat released during phase changes,

we show that neglecting these heat sources can lead to

significant overestimation of the predicted maximum

depth of seismicity. Further suitable refinements of the

present model are including more complicated phase

diagrams and a variable thermal conductivity (Hauck

et al., 1999).

Modelling outputs can be used as inputs for numerical

simulations which require the knowledge of temperature

and density anomaly distributions of subducting zones.

For instance, the computed temperature can be used to

calculate the brittle and ductile yield stress distribution,

assuming a nonlinear rheology, and correlate the

obtained stress distribution with observed seismicity
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patterns in oceanic and continental slabs (e.g., Carmi-

nati et al., 2002). Another possible application relevant

for tomography studies is to use the temperature

anomalies and temperature derivatives of seismic

velocities to obtain the seismic velocity perturbation

distribution (e.g., Sleep, 1973; De Jonge et al., 1994;

Deal et al., 1999) induced by subduction processes.

These synthetic tomographic images can be compared

with tomographic models of subduction zones.

The resulting lateral anomaly of density distribution

can be introduced into dynamic models assuming either

an elastic or viscoelastic rheology (e.g., Bina, 1997;

Wittaker et al., 1992; Giunchi et al., 1996; Negredo et al.,

1999) to evaluate buoyancy forces and the resulting

stress regime and compare it with seismotectonic

observations in different subduction zones. Other

dynamic effects of the presence of metastable olivine

that can be investigated with dynamic models are the

change in the velocity of subduction and in the

topography of the trench.
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Appendix A. Finite difference formulation of the energy

equation

The two-dimensional ADI method is a scheme in

which the dependent variable is solved for implicitly in

the one direction and then in the other direction at time

steps p þ 1 and p þ 2; respectively.

We use the following convention for the grid system:

x ¼ iDx; i ¼ 1; 2;y; I ;

z ¼ jDz; j ¼ 1; 2;y; J;

t ¼ pDt; p ¼ 1; 2;y;P;

T
p
i;j ¼ T

pDt
iDx;jDz:

Consider the finite difference expression of Eq. (1), in

which temperature derivatives with respect to x are

evaluated at time step p þ 1; and derivatives with respect

to z at time step p: At grid point i; j the resulting
equation is

R
p
i;j

T
pþ1
i;j � T

p
i;j

Dt
þ v

p
xi;j

T
pþ1
iþ1;j � T

pþ1
i�1;j

2Dx

 

þ v
p
zi;j

T
p
i;jþ1 � T

p
i;j�1

2Dz

!

¼
K

rp
i;jcp

T
pþ1
iþ1;j � 2T

pþ1
i;j þ T

pþ1
i�1;j

Dx2

 

þ
T

p
i;jþ1 � 2T

p
i;j þ T

p
i;j�1

Dz2

!

� v
p
zi;j

LT

cp

qb
qz

� �p

i;j

þ
agT

p
abs i;j

cp

 !

þ
Hi;j þ ti;jðvs=wÞ

rp
i;jcp

; ðA:1Þ

where

R
p
i;j ¼ 1 þ

LT

cp

qb
qT

� �p

i;j

:

After grouping terms Eq. (A.1) becomes

AiT
pþ1
i�1;j þ BiT

pþ1
i;j þ CiT

pþ1
iþ1;j ¼ Di; ðA:2Þ

where

Ai ¼ �
R

p
i;j

2Dx
v

p
xi;j �

K

rp
i;jcpDx2

;

Bi ¼
R

p
i;j

Dt
þ

2K

rri;jcpDx2
;

Ci ¼
R

p
i;j

2Dz
v

p
zi;j �

K

rp
i;jcpDx2

and

Di ¼
R

p
i;j

Dt
T

p
i;j �

R
p
i;j

2Dz
v

p
zi;jðT

p
i;jþ1 � T

p
i;j�1Þ

þ
K

rp
i;jcpDz2

ðTp
i;jþ1 � 2T

p
i;j þ T

p
i;j�1Þ

� v
p
zi;j

LT

cp

qb
qz

� �p

i;j

þ
agT

p
absi;j

cp

 !
þ

H
p
i;j þ tp

i;jðvs=wÞ

rp
i;jcp

:

An equation similar to Eq. (A.2) is obtained at each

point in the jth row, yielding a set of I equations. This

set of equations gives the temperature at p þ 1 at each

point of the jth row in terms of variables known at the

time step p: We apply the Thomas’ algebraic scheme to

solve this set of equations (see Appendix B).

We now consider the finite difference formulation of

Eq. (1) in which temperature derivatives with respect to

x are evaluated at time p þ 1; and derivatives with
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respect to z at time p þ 2:

R
p
i;j

T
pþ2
i;j � T

pþ1
i;j

Dt
þ v

p
xi;j

T
pþ1
iþ1;j � T

pþ1
i�1;j

2Dx

 

þ v
p
zi;j

T
pþ2
i;jþ1 � T

pþ2
i;j�1

2Dz

!

¼
K

rp
i;jcp

T
pþ1
iþ1;j � 2T

pþ1
i;j þ T

pþ1
i�1;j

Dx2

 

þ
T

pþ2
i;jþ1 � 2T

pþ2
i;j þ T

pþ2
i;j�1

Dz2

!

� v
p
zi;j

LT

cp

qb
qz

� �pþ1

i;j

þ
agT

pþ1
absi;j

cp

 !

þ
H

p
i;j þ tp

i;jðvs=wÞ

rp
i;jcp

ðA:3Þ

which, grouping terms, gives

AjT
pþ2
i;j�1 þ BjT

pþ2
i;j þ CjT

pþ2
i;jþ1 ¼ Dj ; ðA:4Þ

where

Aj ¼ �
R

p
i;j

2Dz
v

p
xi;j �

K

rp
i;jcpDz2

;

Bj ¼
R

p
i;j

Dt
þ

2K

rp
i;jcpDz2

;

Cj ¼
R

p
i;j

2Dz
v

p
zi;j �

K

rp
i;jcpDz2

and

Dj ¼
R

p
i;j

Dt
T

pþ1
i;j �

R
p
i;j

2Dx
v

p
xi;jðT

pþ1
iþ1;j � T

pþ1
i�1;jÞ

þ
K

rp
i;jcpDx2

ðTpþ1
iþ1;j � 2T

pþ1
i;j þ T

pþ1
i�1;jÞ

� v
p
zi;j

LT

cp

qb
qz

� �pþ1

i;j

þ
agT

pþ1
abs i;j

cp

 !

þ
H

p
i;j þ tp

i;jðvs=wÞ

rp
i;jcp

:

An equation of form (A.4) can be obtained for each

point of the ith column, yielding J simultaneous

equations. The I sets of J equations obtained at time

p þ 2 are solved as before applying the Thomas

algorithm (Appendix B). Therefore, the temperature at

time p þ 2 is obtained from temperature at time p in two

time steps. An equation implicit in x (Eq. (A.2)) is used

for the first time step and an equation implicit in z

(Eq. (A.4)) for the second.
Appendix B. Application of Thomas’ algorithm to the

ADI scheme of the energy equation

We consider the system of equations obtained at time

step p þ 1:

AiTi�1;j þ BiTi;j þ CiTiþ1;j ¼ Di;

i ¼ 1; 2;y; I � 1; ðB:1Þ

where we are omitting the superscripts. The Thomas

algorithm operates by reducing this system of equations

to upper triangular form, by eliminating Ti�1 in each of

the equations. Consider that the first k equations (B.1)

have been reduced to

Ti;j � wiTiþ1;j ¼ gi; i ¼ 1; 2;y; k; ðB:2Þ

the last of these equations is

Tk;j � wkTkþ1;j ¼ gk ðB:3Þ

and the next equation in the original form is

Akþ1Tk;j þ Bkþ1Tkþ1;j þ Ckþ1Tkþ1;j ¼ Dkþ1: ðB:4Þ

We eliminate Tk;j from (B.3) and (B.4) and rearrange

terms

Tkþ1;j �
�Ckþ1

Bkþ1 þ Akþ1wk

Tkþ2;j ¼
Dkþ1 � Akþ1gk

Bkþ1 þ Akþ1wk

ðB:5Þ

comparison with Eq. (B.2) shows that the coefficients wi

and gi can be obtained from the following recurrence

relations:

wi ¼
�Ci

Bi þ Aiwi�1
gi ¼

Di � Aigi�1

Bi þ Aiwi�1

i ¼ 2; 3;y; I : ðB:6Þ

The initial values can be obtained by applying in

Eq. (B.2) the condition of zero horizontal heat flow at

the lateral boundaries, T1;j ¼ T2;j ; then

w1 ¼ 1; g1 ¼ 0: ðB:7Þ

We use these initial values to recursively find all the

coefficients. Then we can calculate the last value of T by

applying again the boundary condition TI ;j ¼ TI�1;j in

Eq. (B.2):

TI ;j ¼
gI�1

1 � wI�1
: ðB:8Þ

Therefore, beginning from the known value of TI ;j ;
Eq. (B.2) gives the values TI�1;j ; TI�2;j ; in order,

finishing with T1;j : This computation is stable if jwi jo1:
In the following time step, p þ 2; the temperature

derivatives with respect to z are evaluated at p þ 2; and

derivatives with respect to x at time p þ 1: We now apply

the boundary conditions at the base and surface of the

model. We assume constant basal heat flow Qb to obtain

Ti;2 ¼ Ti;1 �
Qb

K
Dz: ðB:9Þ
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We then apply Eq. (B.2)

Ti;1 � w1 Ti;1 �
Qb

K
Dz

� �
¼ g1; ðB:10Þ

so if w1 ¼ 1; then g1 ¼ ðQb=KÞDz: We then apply

Eq. (B.6) to find recursively the rest of the coefficients.

Finally, with the condition of constant surface tempera-

ture of 0�C; so Ti;J ¼ 0; we can apply Eq. (B.2) to

calculate Ti;J�1;y;Ti;1:

References

Akaogi, M., Ito, E., Navrotsky, L., 1989. Olivine-modified

spinel–spinel transitions in the system Mg2SiO4 � Fe2SiO4:

calorimetric measurements, thermochemical calculation and

geophysical application. Journal of Geophysical Research

94, 15671–15685.

Bina, C.R., 1996. Phase transition buoyancy contributions to

stresses in subducting lithosphere. Geophysical Research

Letters 23, 3563–3566.

Bina, C.R., 1997. Patterns of deep seismicity reflect buoyancy

stresses due to phase transitions. Geophysical Research

Letters 24, 3301–3304.

Carminati, E., Giardina, F., Doglioni, C., 2002. Rheological

control on subcrustal seismicity in the Apennines subduc-

tion (Italy). Geophysical Research Letters 29, doi:10.1029/

2001GL014084.

D.assler, R., Yuen, D.A., 1996. The metastable olivine wedge in

fast subducting slabs; constraints from thermo-kinetic

coupling. Earth and Planetary Science Letters 137, 109–118.

Deal, M., Nolet, G., Van der Hilst, R.D., 1999. Slab

temperature and thickness from seismic tomography.

Journal of Geophysical Research 104, 28789–28802.

De Jonge, M.R., Wortel, M.J.R., Spakman, W., 1994. Regional

scale tectonic evolution and the seismic velocity structure of

the lithosphere and upper mantle: the Mediterranean

region. Journal of Geophysical Research 99, 12091–12108.

Devaux, J.P., Schubert, G., Anderson, C., 1997. Formation of a

metastable olivine wedge in a descending slab. Journal of

Geophysical Research 102, 24627–24637.

Devaux, J.P., Fleitout, L., Schubert, G., Anderson, C., 2000.

Stresses in a subducting slab in the presence of a meta-

stable olivine wedge. Journal of Geophysical Research 105,

13365–13373.

Frohlich, C., 1989. The nature of deep focus earthquakes.

Annual Review of Earth and Planetary Sciences 17, 227–254.

Giunchi, C., Sabadini, R., Boschi, E., Gasperini, P., 1996.

Dynamic models of subduction: geophysical and geological

evidence in the Tyrrhenian Sea. Geophysical Journal

International 126, 555–578.

Green, H.W., Young, T.E., Walker, D., Scholz, C.H., 1990.

Anticrack-associated faulting at very high pressure in

natural olivine. Nature 348, 720–722.

Hauck, S.A. II, Phillips, R.J., Hofmeister, A.M., 1999. Variable

conductivity: effects on the thermal structure of slabs.

Geophysical Research Letters 26, 3257–3260.

Kirby, S.H., Durham, W.B., Stern, L.A., 1991. Mantle phase

changes and deep-earthquake faulting in subducting litho-

sphere. Science 252, 216–225.
Kirby, S.H., Stein, S., Okal, E., Rubie, D.C., 1996. Metastable

mantle phase transformations and deep earthquakes in

subducting oceanic lithosphere. Reviews of Geophysics 34,

261–306.

Marton, F.C., Bina, C.R., Stein, S., Rubie, D.C., 1999. Effects

of slab mineralogy on subduction rates. Geophysical

Research Letters 26, 119–122.

McKenzie, D.P., 1969. Speculations on the consequences and

causes of plate motions. Geophysical Journal of the Royal

Astronomical Society 188, 1–32.

Meade, C., Jeanloz, R., 1991. Deep-focus earthquakes an

recycling of water into the Earth’s mantle. Science 252,

68–72.

Minear, J.W., Toks .oz, M.N., 1970. Thermal regime of a

downgoing slab and new global tectonics. Journal of

Geophysical Research 75, 1397–1419.

Negredo, A.M., Carminati, E., Barba, S., Sabadini, R., 1999.

Dynamic modelling of stress accumulation in Central Italy.

Geophysical Research Letters 26, 1945–1948.

Ponko, S.F., Peacock, S.M., 1995. Thermal modelling of the

southern Alaska subduction zone: insight into the petrology

of the subducting slab and overlying mantle wedge. Journal

of Geophysical Research 100, 22117–22128.

Rubie, D.C., 1984. The olivine–spinel transformation and

the rheology of subducting lithosphere. Nature 308,

505–508.

Rubie, D.C., Ross, C.R., 1994. Kinetics of the olivine–spinel

transformation in subducting lithosphere: experimental

constraints and implications for deep slab process. Physics

of Earth and Planetary Interiors 86, 223–241.

Schmeling, H., Monz, R., Rubie, D.C., 1999. The influence of

olivine metastability on the dynamics of subduction. Earth

and Planetary Science Letters 165, 55–66.

Scholz, C.C.H., 1990. The Mechanics of Earthquakes and

Faulting, Cambridge University Press Cambridge, UK,

439pp.

Sleep, N.H., 1973. Teleseismic P-wave transmission through

slabs. Bulletin of the Seismological Society of America 63,

1349–1373.

Stein, C.A., Stein, S., 1992. A model for the global variation in

oceanic depth and heat flow with lithospheric age. Nature

359, 123–129.

Stein, S., Stein, C.A., 1996. Thermo-mechanical evolution of

oceanic lithosphere: implications for the subduction process

and deep earthquakes. Subduction from top to bottom.

Geophysical Monograph 95, 1–17.

Tezlaff, M., Schmeling, H., 2000. The influence of olivine

metastability on deep subduction of oceanic lithosphere.

Physics of Earth and Planetary Interiors 120, 29–38.

Toks .oz, M.N., Minear, J.W., Julian, B.R., 1971. Temperature

field and geophysical effects of a downgoing slab. Journal of

Geophysical Research 76, 1113–1138.

Turcotte, D.L., Schubert, G., 1973. Frictional heating of the

descending lithosphere. Journal of Geophysical Research

78, 5876–5886.

Turcotte, D.L., Schubert, G., 2002. Geodynamics, 2nd Edition.

Cambridge University Press, Cambridge, UK, 456pp.

Wittaker, A., Bott, M.H.P., Waghorn, G.D., 1992. Stress and

plate boundary forces associated with subduction plate

margins. Journal of Geophysical Research 97, 11933–11944.


	TEMSPOL: a MATLAB thermal model for deep subduction zones including major phase transformations
	Introduction
	Previous models
	The model
	Some simulations
	Discussion
	Acknowledgements
	Finite difference formulation of the energy equation
	Application of Thomas’ algorithm to the ADI scheme of the energy equation
	References


