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FD methods for diffusion (II)

The transient time-dependent two-dimensional heat equation in (x,z)
space reads (see course script “basic equations”)
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where ρ is the density, cp heat capacity, k thermal conductivity and Q
is the radiogenic heat production.

The simplest way to discretize equation (1) on a domain, e.g. a box
with width L and height H, is again the explicit FTCS scheme
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There are now two indices for space dependency: i for z-direction
(depth) and j for x-direction (width). Rearranging gives
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where

βx =
κ∆t

∆x2
and βz =

κ∆t

∆z2
.

Boundary conditions can be set the usual way. A constant temperature
(Dirichlet BC) Tleft on the left hand side of the domain (at j = 1), for
example, is given by

Ti,j=1 = Tleft ∀i .

A constant flux (Neumann BC) on the same boundary may be set
through so-called “fictious boundary” points (not discussed here).
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The major disadvantage of fully explicit schems is, of course, that they
are only stable if

2 κ∆t

min (∆x2, ∆z2)
≤ 1 .

If we employ instead a fully implicit and unconditionally stable
discretization scheme as for the 1D case, the above expression can
be written as (in complete analogy)
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Rearranging terms with n + 1 on the left and terms with n on the right
hand side gives (without the term Qn

i,j∆t/ρcp)
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As in the 1D case, we have to put these equations in a matrix A and
vector rhs and use Matlab’s “x = A\rhs” to solve for T n+1.

From a practical point of view, however, this is a bit more
complicated than the 1D case, since we have to deal wirh “book-
keeping” issues, i.e. the mapping of Ti,j to the entries of a temperature
vector T (k) – as opposed to the more intuitive matrix T (i, j) we were
allowed to in the case of an explicit scheme.

If a 2D temperature field is to be solved for with an equivalent vector T ,
the nodes have to be numbered continuously !
The derivative versus the x-direction is then e.g. (nx = 7, nz = 5)
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and the derivative versus z-direction is given by
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If nx are the number of grid points in x-direction and nz the number
of points in z-direction, we can write these expressions in the general
form
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Figure: Numbering scheme for a 2D grid with nx = 7 and nz = 5
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Exercise

The problem to be considered is that of the thermal structure of a
lithosphere of 100 km thickness, with an initial thermal gradient of 13
K/km. Suddenly a plume with T = 1500 degree Celsius impinges at the
bottom of the lithosphere.

Fill in the question marks in the script heat2D template.m at the
course website. Employ Dirichlet boundary conditions on edges of the
domain. Ignore the effects of radioactive heat.

What happens with the thermal structure of the lithosphere ? –
A related (structural geology) problem is that of the cooling of batholiths
(like the ones in the Sierra Nevada).
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