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1. Cooling of an Isothermal Earth

Determinations of the temperature distribution within the Earth have
long been a major focus of the physical sciences.
Early in the nineteenth century it was recognized from temperature
measurements in mines, that the temperature T increased with depth
z at a rate

dT

dz
∼ 20 − 30 K km−1

the geothermal gradient. At this time, the heat flow at the Earth’s
surface implied by the geothermal gradient was attributed to the
secular cooling of the planet, an inference that, as it turns out later,
was only partially correct.

William Thompson (alias Lord Kelvin) used this assumption as the
basis for his estimate of the age of the Earth. He assumed that the
Earth was conductively cooling from an initial hot stage:
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The distribution of temperature T at shallow depths under his
assumptions can be modeled as one-dimensional, time-dependent
heat conduction in the absence of heat sources as follows:
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ρcp

∂T

∂t
= k

∂2T

∂z2
(1)

In this heat conduction equation, ρ is the density, cp is the specific heat,
and k is the thermal conductivity.

The Earth surface is considered as a semi-infinite half-space
defined by z > 0, which is initially at a temperature T1. Upon
planet formation, its surface temperature is suddenly decreased to
temperature T0 (at t = 0). This surface temperature T0 is afterwards
held constant for t > 0 until today. The solution to this problem, which
also serves as the basic thermal model for the oceanic lithosphere, can
be found in standard textbooks (e.g. Turcotte & Schubert, 1982) as

T1 − T (z)

T1 − T0

= 1 −
2
√

π

∫ z

2
√

κt

0

exp (−η2) dη , (2)

where κ = k/ρcp is the thermal diffusivity (with units m2/s).
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Equation (2) cannot be solved analytically, but it is easy to see two
simple limiting cases:

• At the surface (z = 0), the integral is zero and T = T0.

• In the deep interior (z → ∞), the integral is
√

π/2 and temperatures
approach the limit T1. .

Regions in the Earth where heat diffusion is an important heat transfer
mechanism are usually referred to as thermal boundary layers.

We may define the thickness of this boundary layer, the so-called
“thermal lithosphere”, as the depth zL where the left hand side of
equation (2) is equal to 10%. From equation (2), it would follow for
this special choice

zL ∼ 2.32
√

κt .
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The outward heat flux q0 at the lithosphere surface is given by
differentiating equation (2) and evaluating the result at z = 0:

q0 = k
(∂T

∂z

)

z=0

=
k (T1 − T0)√

πκt
(3)

Equation (3) shows that the surface heat flux is proportional to the
product of conductivity k and the temperature difference (T1 − T0) and
inversely proportional to the thermal boundary layer thickness (

√
κt).

On the basis of this equation, Thompson proposed that the age of
the Earth t0 is given by

t0 =
(T1 − T0)

2

π κ (∂T/∂z)2z=0

, (4)

where (∂T/∂z)z=0 is the present geothermal gradient.
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With (∂T/∂z)z=0 = 25 K km−1, T1 − T0 = 2000 K, and κ = 1 mm2s−1,
the age of the Earth from equation (4) is t0 ∼ 65 Myr.

Lord Kelvin arrived at this age using the geothermal gradient
measured in mines. The values of the temperature difference and
the thermal diffusivity used were both reasonable. We now recognize,
however, that the continental crust has a near-steady-state heat
balance due to the heat generated by the heat-producing isotopes
within the crust and the mantle heat flux from below (e.g. Sandiford,
Tectonophysics 305 (1999) 109-120). His biggest historical mistake
was, however, to neglect the main heat transport in the Earth mantle,
i.e., thermal convection.

We want to use here the Lord Kelvin problem to demonstrate the
availability of numerical methods to solve the 1D heat conduction
equation (1) numerically.
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2. Numerical solution

We want to solve equation (1) using the finite difference (FD) method.
The solution of partial differential equations (PDEs) by means of FD
is based on approximating derivatives of continuous functions by a
discretized version of the derivative based on a discretized function.
FD approximations can be derived through the use of Taylor series
expansions.

The first step in the FD method is to construct a grid with points
on which we are interested in solving the equation (this is called
discretization).

The next step is to replace the continuous derivatives of eq. (1) with
their finite difference counterparts. The time derivative ∂T/∂t can be
approximated within a forward FD approximation as

∂T

∂t
≈

T n+1

i − T n
i

tn+1 − tn
=

T n+1

i − T n
i

∆t
=

T new
i − T current

i

∆t
, (5)
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here T n represents the temperature at the current time step, whereas
T n+1 represents the new (future) temperature. The subscript i refers
to the location (see figure). Both n and i are integers; n varies from 1 to
nt (total number of time steps) and i varies from 1 to nx (total number
of grid points in z-direction).

The spatial derivative is replaced by a central FD approximation, i.e.,

∂2T

∂z2
=

∂

∂z

(∂T

∂z

)

≈
T n

i+1−T n
i

h
− T n

i −T n
i−1

h

h
=

T n
i+1 − 2 T n

i + T n
i−1

h2
(6)

Substituting equations (5) and (6) into equation (1) yield the so-called
FTCS approximation (forward time centered space) for the considered
parabolic PDE

T n+1

i − T n
i

∆t
= κ

(T n
i+1 − 2 T n

i + T n
i−1

h2

)

. (7)
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The third step is a rearrangement of the discretized equation, so that
all known quantities (i.e. temperatures at time n) are on the right-hand
side and the unknown quantities on the left-hand side (properties at
n + 1). This results in

T n+1

i = T n
i + κ ∆t

(T n
i+1 − 2 T n

i + T n
i−1

h2

)

. (8)

Because the temperature at the current timestep T n is known, we
can use eq. (8) to compute the new temperature without solving any
additional equations. Such a scheme is called explicit and was made
possible by the choice to evaluate the temporal derivative with forward
differences.

The last step is to specify the initial and the boundary conditions. If
the surface temperature T0 is held constant at 300 K and the mantle
temperature far away from the surface T1 has the (asymptotic) value
2300 K, we can write the boundary conditions as follows
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T (z = 0, t) = 300 (9)

T (z = L, t) = 2300 (10)

The initial step-like temperature profile is given simply with

T (z ≤ 0, t = 0) = 300 (11)

T (z > 0, t = 0) = 2300 (12)

The attached MATLAB code shows an example in which the grid is
initialized, and a time loop is performed. In the exercise, you will fill in
the question marks and obtain a working code that solves equation (8).
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Finite difference discretization of the 1D heat equation.
The finite difference method approximates the temperature at given
grid points, with spacing h. The time evolution is computed at given
times with timestep ∆t.
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3. Exercise

1. Open MATLAB and an editor and type the Matlab script in an empty
file; alternatively use the template provided if you need inspiration.

Save the file under the name heat1D.m. If starting from the template,
fill in the question marks and then run the file by typing heat1D in
the MATLAB command windows (make sure you are in the correct
directory), or, alternatively, click RUN within the editor.

2. Study the time evolution of the spatial solution. Comment on the
nature of the solution. What parameter determines the relationship
between two spatial solutions at different times ?

Does the temperature of the deep mantle matter for the nature of
the solution ?

3. Vary the parameters (e.g. use more grid points, a larger or smaller
timestep). Note that if the timestep is increased beyond a certain
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value, the numerical method becomes unstable. What does this
value depend on ? - This turns out as a major drawback of explicit
finite difference codes such as the one presented here.

4. Record and plot the temperature evolution T (z, t) versus time at a
depth z = 10 km. Do the same with the thermal gradient (∂T/∂z)z=0

at the surface. Compare the obtained numerical solution with the
analytical expression according to eq. (3).

5. Think about how one would write a non-dimensionalized version of
the temperature solver.

6. Bonus question: Derive a finite-difference approximation for
the case of a variable thermal conductivity k. Test and
compare the solutions for different depth dependencies of k.
– A regarding recent study can be found, e.g., at McKenzie,
Jackson & Priestley, EPSL 233 (2005) 337-349. [ see http://

www.dynamicearth.de/compgeo/Tutorial/Day1/McKenzie2005.pdf ]
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