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Lecture 6. Subduction, and
subduction orogeny

Outline
Driving versus resisting forces- a key Is subduction
channel

Subduction initiation —a key problem of plate tectonics
Subduction initiation In early Earth
Mature subduction-effect of mantle viscosity

Subduction orogeny (Central Andes)



Appropriate model setup

Conventional boundary condition.

gabbro felsic upper crust

d peridoti

depleted peridotite

Pull from the slab portion below 400 km
IS ignhored.




Appropriate model setup

gabbro felsic upper crust
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depleted peridotite
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Sobolev and Babeyko, Geology, 2005




Frame 001 | 25 Sep 2004 | landing

At friction in subduction channel >or =0.1
subduction does nor survive (see FrO_1.avi)
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Initiation

Spontaneous initiation at transform fault

Transform or Fracture Zone

oy i Akt

A. Young

Spreading Retreating
(proto-forearc) hinge

Sinking

Arc Volcarw Forearc
\ ,|“‘|

True
Subduction

Young |

Geological exaples known (Stern, 2005) but was
not confirmed by modeling (Gurnis et al., 2004)



Initiation
Forced Initiation at transform fault
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(Hall et al., 2003, Gurnis et al., 2004)



Initiation

Wilson cycle

(e) Subduction zone

[(5) Continental collision
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Pull from old subducted slab? Initiation
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Pull from old subducted slab? Initiation

Temperature (°C)

0 400 800 . |1\2|09 1509
Upper continental crust Weak continental crust

Lower continental crust Oceanic crust

Setting the model up



Pull from old subducted slab?

Log (strain rate)
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Pull from old subducted slab? Initiation
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Pull from old subducted slab?

Initiation
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Problem 3D!



Initiation
Possible subduction initiation in Atlantics




Initiation
Possible subduction initiation in Atlantics




When the plate tectonics started on Earth?

Diamond inclusions” °

> 3 Ga: peridotitic
< 3Ga: eclogitic +
peridotitic
Plate tectonics
started ~ 3Ga
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Zircon Age Distribution through time.
Monitor of Continental Crust growth
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Condie & Aster, 2009



First subduction

LETTER

doi:10.1038/naturel3728

Spreading continents kick-started plate tectonics

3

& Nicolas Flament!

Patrice F. Rey’, Nicolas Coltice

Stresses acting on cold, thick and negatively buoyant oceanic litho-
sphere are thought to be crucial to the initiation of subduction and
the operation of plate tectonics'?, which characterizes the present-
day geodynamics of the Earth. Because the Earth’s interior was hotter
in the Archaean eon, the oceanic crust may have been thicker, thereby
making the oceanic lithosphere more buoyant than at present?®, and
whether subduction and plate tectonics occurred during this time is
ambiguous, both in the geological record and in geodynamic models®.
Here we show that because the oceanic crust was thickand buoyant’,
early continents may have produced intra-lithospheric gravitational
stresses large enough to drive their gravitational spreading, to initi-
ate subduction at their margins and to trigger episodes of subduc-
tion. Our model predicts the co-occurrence of deep to progressively
shallower mafic volcanics and arc magmatism within continents in
a self-consistent geodynamic framework, explaining the enigmatic

that of present-day tectonic forces driving orogenesis'. To explore the

tectonic impact of a thickand buoyant continent surrounded by a stag
nant lithosphericlid, we produced a series of two-dimensional thermo-
mechanical numerical models of the top 700 km of the Earth, using
temperature-dependent densities and vi stic rheologies that de pmd
on temperature, melt fraction and depletion, stress and strain rate (see
Methods). The initial temperature field is the horizontally averaged tem-
perature profile of a stagnant-lid convection calculation for a mantle
~200 Khotter thanat present (Fig. 1A, a and Extended Data Fig. 2). The
absence of lateral temperature gradients ensures that no convective stresses
acton thelid, allowing us toisolate the dynamic effects of the continent.
A buoyant and stiff continent 225 km thick (strongly depleted mantle
yot 170 km thick overlain by felsic cr eeFig. 1B, a) is
inserted within the lid, on the left side of the domain to e.\plml the sym-
the problem (Fig. 1A, a). A mafic crust 15 km thick covers the




First subduction
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First subduction: Initiation by plume
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Initiation
Initiation by plume
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Initiation
Initiation by plume

Topography (km) Temperature(K)
5 5 500 750 1000 1250 1500
a
1,200
1,000 2N
@
800 o 3
= 8
S 600 o]
§ 2
R =
- ‘ =
400 Triple —» 3
junction )
200
0 §
0 200 400 600 800 1,000 1,200
b
1,200 13
1,000 =14
800 -15
3 _
13 &
3 =
% 600 -16 =
b 9
a =
400 =17
200 -18
0 -19

800 1,000 1,200
Distance (km)




Mature

Study of effect of TZ and lower mantle viscosity
and phase transformations on self-consistent
slab dynamics

Code: elasto-visco-plastic, implicit (SLIM2D),
disl. +dif.+P creep in upper mantle, TZ and lower
mantle optional

Quinteros, Sobolev, Popov, 2010



Effect of TZ and lower mantle viscosity Mature
(viscosity in TZ 3*10720, LM 3*10"21)  Quinteros et al., 2010
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Effect of TZ and lower mantle viscosity Mature
(viscosity in TZ 3*10721,LM 1.5*10"22) Quinteros et al., 2010
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Conclusions

Subduction survives only if friction in subduction channel is
below 0.1 —need for high-pressure fluid in the channel

Subduction initiation at passive margin (Wilson cycle) Is
unlikely unless there Is strong mantle suction flow.

Spontanios subduction initiation at transform fault is not yet
confirmed by model., while modeling confirms forced initiation.

First subduction at Earth might have been initiated by mantle
plume.

Style of internally consistent dynamic subduction is largely
controled be lower mantle and TZ viscosity. Plausible range of
TZ viscosity i1s 3*10720-*10721 and LM viscosity 5-10 times
higher.
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Orogeny

The central Andes model
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Factors controlling Andean orogeny

]
South America drift

——1Lrench roll-back

South America drif

Babeyko and Sobolev, 2005, Babeyko et al., 2006,
Sobolev and Babeyko, 2005; Sobolev et al., 2006

Orogeny

The key factors controlling
Andean orogeny were;:

(i) overriding rate of South
America plate,

(i) friction in subduction
channel,

(iii) initial thickness of the upper-
plate crust
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Seismic tomography Delamination
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