
CHAPTER 1 O
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The Seismic Source: Kinematics

In Section 2.5 and Chapter 3, we studied seismic sources so that we could begin to
determine what aspects of the theory of wave propagation are needed in seismology. Having
completed a study of wave propagation in Chapters 4-9, we retum here to a more thorough
examination of seismic sources. Of all the various types of source that can generate seismic
waves (explosions, rapid phase transformations, etc.), the principal source we shall study
is that involving a surface (the fault plane) across which shearing motions develop. In
Section 3.1, we showed thatif the displacement discontinuity across a fault surface is a
known function of time and position on the fault, then motions throughout the medium are
completely determined. This result provides the basis of the present chapter, in which we
shall characterize what may be learned from far-field and near-field observations about the
kinematics of motion at an earthquake source.

To understand the physical processes actually occurring in the source region, one
must study stress-dependent material properties such as the way in which material failure
nucleates and spreads (e.g., over a fault plane), rapidly relieving stresses that had slowly
risen (due to long-term tectonic processes) to exceed the strength ofmaterial in the source
region. This is a dynamic problem, and a very difficult one, which we take up in the next
chapter. As we develop now the simpler problem of fault kinematics, we are guided to some
extent by the constraint that faulting is a process offailure in shear.

Our stafiing point is the representation theorem (equation (3.2)) of Chapter 3. Neglect-
ing body forces and stress discontinuities, recall that the elastic displacement u caused by
a displacement discontinuity [u((, r)] across an internal surface ) has the components

where cipoq are the elastic moduli defined in equation (2.rs); G,,(x,t:(,r) is the Green
function defined in Section 2.4; v is the normar to x as shown in Figure 3.1; and G ip,r(x, t :

(' z) is the derivative of Gr, with respect to (n. rn a homogeneous, isotropic, unboünded
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492 Chapter 10 / THE SEISMIC SOURCE: KINEMATICS

medium, the Green function can be stated explicitly. Thus, using (2.37) and (4.23), with
body force taken as a unit impulse, it follows that
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where y is the unit vector from the source point ( to the receiver point x, and r : lx - ( 
I

is the distance between those two ooints.

10.1 Kinematics of an Earthquake as Seen at Far Field

We shall obtain formulas for the displacement waveforms of P- and ,S-waves in the far field
for faulting in a homogeneous medium. After outlining some general properties of these

waveforms, we shall look in particular at their low-frequency component. Specializing next
to the case of unidirectional propagation, we shall study waveforms due to a source char-

acteized by five parameters: the fault length; the fault width; the rupture velocity; the final
offset; and the "rise time," which characterizes the time taken for the offset, at a parlicular
point on the fault, to reach its final value. This simple five-parameter characterization is

often adequate to interpret the waves leaving a finite source. Where a more detailed de-

scription of the fault motions is required, we can separately study different stages of the

faulting process such as nucleation of motion, the spreading of rupture, and the stopping
of motion. We describe several examples of these stages and conclude the analysis of far-

field waveforms with an examination of their intermediate-frequency and high-frequency

content.

10.1.1 FAR-FIELD DISPLACEMENT WAVEFORMS OBSERVED IN A
HOMOGENEOUS. ISOTROPIC. UNBOUNDED MEDIUM

We choose to work with a homogeneous, isotropic, unbounded medium in order to minimize
the complication of path effects.

If the receiver position x is sufflciently far from all points ( on the fault surface X,
then only the far-field terms in the Green function (10.2) are significant. From (10.1), after
carrying out the integral with respect to z, we obtain the far-field displacement
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10. 1 Kinematics of an Earthquake as Seen at Far Field

in which we have used the relation A /AQ : -313x* valid for operations on quantities such
as f and r, which are dependent only on the difference between x and (. Carrying out the
differentiation with respect to rn, noting that 0rl\xn is merely y* and ignoring all terms
that attenuate with distance more rapidlv than r I. we obtain

rar-fierd of z,(x, tr: IIrffir,rrlu, (r,t Y71vp dE
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yqvk dE.)l
obviously, the first term corresponds to P-waves and the second to s-waves.

If the station is far enough away, as compared to the linear dimension of fault surface X,
we can safely assume that the distance r and direction cosine Z, are approximately constant,
independent of (, and that such slowly varying factors can be taken outside the integral. For
simplicity, we shall further assume that the fault surface ) is a plane and that the direction
of the displacement discontinuity is the same everywhere on the fault. we write

[u1Q,t)):n j.Lu(C,t), (10.5)

where Aa is a scalar function, which we shall call the "source function," or the "slip
function" in the case of a shear fault. Under these assumptions, equation (10.4) reduces
to

far-field of u;(x,r): 
ffi.cirpqTpyqvr,", II"Lü (e ,, -:) o,

.W citpqyqvr,ni I I "o, 
(e,, - ;) o""ou'

In general, Aa can vary rapidty with time and space-so the retarded times in the integrands
of ( 10.6) must include the variation of r with ( . The overall amplitude factor ro 1 is based
on the distance ro to the receiver from a reference point on the fault.

The above equation permits a remarkably simple exposition of far-field displacement
due to P- and S-waves from an earthquake source. Since yry,: l and yi(lip - Tiyp) :0,we
see immediately that the particle motion of P-waves is parallel to 7, and that of S-waves
is perpendicular to y. Wave amplitudes attenuate with distance as ro 1, and are inversely
propottional to the cube of their propagation velocities. Since other factors are comparable
between them, the s-wave amplitude is roughly o3 lp3 ? 5) times larger than the p-wave
amplitude.

The factor (c irpqTpYqvt;'z;) represents the radiation pattem of P-waves, determined by
the orientation of the fault plane (u*), the direction of the displacement discontinuity (n j),
and the direction to the station (lro) from the fault. Similarly, taking yt and y" as orthogonal
unit vectors in the plane perpendicular to y, the radiation of S-waves is described by their
amplitude (c1qry'nyrvrnT) in the y/-direction and (cil,pqylyqvtn ) in the y,,-direction.
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Relative amplitudes between the two directions determine the polarization angle for S-

waves, which is sometimes used (in addition to the first motion for P-waves) for determining

fault-plane solutions.
Finally, the shapes of the displacement waveforms of P- and S-waves in equation (10.6)

are described by the only terms exhibiting a time dependence. These waveform shapes are

therefore simple integrals of the form

(10.7)

where c is the velocity of wave propagation (either a or fr).

10.1.2 FAR-FIELD DISPLACEMENT WAVEFORMS FOR INHOMOGENEOUS

ISOTROPIC MEDIA, USING THE GEOMETRICAL-SPREADING
APPROXIMATION

In Chapter 4, equations (4.84)-(4.86), we obtained the far-field displacement at x under

the assumption that the whole fault (with area A) was acting effectively as a point source.

This is the case when wavelengths of interest are much longer than the fault dimensions,

but are much shorter than the distance from source region to receiver. But throughout all of
this Section 10.1 we are interested in the more general case in which wavelengths may

be comparable with (and possibly less than) the fault dimensions, so that there can be

interference between waves radiated from different parts of the fault surface. Making an

analogy with electromagnetic wave generation, we are thinking here of the waves from a

finite antenna, whose linear dimensions may be longer than the radiated wavelength.

Note that an alternative way to obtain the far-field displacement waveform (10.4) is to

integrate the effect of each area element dX regarded as a point source, using (4.84) for the

P-waves and (4.85) for S-waves, but making allowance for different travel times to x from

different parts of the fault surface. For example, for P-waves, using [ü] dX now instead of
üÄ, *e find from (4.84) that

far-field P-wave of u;(x,t)

Q(x,l) : I I, ^ü (c,,-E=) d>c),

:;*ll""T
1",

which is just the same as the P-wave component in (10.4), since ciprrfüi)Tnvr:
2p,y1lü thtpvp for slip in isotropic media.

The virtue of this latter approach is that it can so easily be extended to inhomogeneous

media, since in Chapter 4 we identified the far-field approximation with the geometrical-

spreading approximation, and in equations (4.93)-(4.95) we gave what can be regarded as

f'



10.1 Kinematics of an Earthquake as Seen at Far Field

the integrand of the integral we now need for a finite fault surface. For inhomogeneous
media, then, the equation that generalizes the P-wave component of (10.6) is

far-field P-wave of u(x, r)

5P p(e ür
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(10.9)

in which I (the direction at x of the ray from the fault), 9P (the radiation pattem), and ßP
(the geometrical spreading factor) are evaluated for some reference point (6 on X. Formulas
similar to (10.9) but for the waveforms of SV and SI1 can immediatelv be written down
tuom (4.94) and (4.95).

10.1.3 GENERAL PROPERTIES OF DISPLACEMENT WAVEFORMS IN
THE FAR FIELD

For convenience in presentation, we shall continue to use homogenous media for develop-
ment of the theory, giving in Box 10.2 an example of how our source theory can be merged
with wave-propagation theory for realistic media.

Taking the origin of coordinates at a reference point on the fault, the distance r between
the surface element dE and the receiver ooint x can be written as

r:lx-(l:ro . , lA2 2G .y;
rt 

116 ro
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(10.10)

where ro is the distance to the receiver from the origin, 16 : I x | , y is the unit vector pointing
to the receiver, and ( is the location vector of dX measured from the origin (Fig. 10.1).

For rs large compared with the linear dimension of X, we may approximate equa-
tion (10.10) by

r-ro-G'v). (10.1 1)

The error är in path length due to this approximation may be estimated by the largest
terms neglected in the series expansion in equation (10.10):
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FIGURE 10.1
The origin of coordinates
is taken on a finite fault
surface.

If this error is equal to or greater than a quarter wavelength, ), /4, a serious error will be

introduced in the result ofintegration. Therefore, the approximation by equation (10.11) is
justifled only for

Irc( - {€'D'z]

or, conservatively,

12 << |xro, (10.12)

where Z is the maximum of l( | on X. This is the same as the condition to be satisfied for
the region of Fraunhofer diffraction in optics. For comparison, note that the condition we

assumed in Chapter 4, in which the whole fault was regarded as a point source, amounted

to L 14 y, which is a much more restrictive condition on the applicable frequency range

than (10.12). Under condition (10.12), we can rewrite the displacement waveform given in
equation (10.7) as

Lu+
I

;LIo

(10.13)

Note that the far-field pulse shape depends more directly on y than on x, since it is position

on the focal sphere which governs this pulse shape, and many positions x have the same

value of y.
Taking the Fourier transform of the above equation with respect to /, we get

o(x,ro): Q(/, ,r: 
II"Lü(€,ro) 

*r {=t;*} ,"

O(x, r) : Q(/, tr: I I" ^r [(. 
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(10.14)



1 0.1 Kinematics of an Earthquake as Seen at Far Field

This shows that the Fourier transform 9(y , .) of the observed displacement waveform with
phase correction for the delay rt;rof c due to propagation can be expressed as a superposition

of plane waves of the type exp[-lar (4 . y) lcl Specifically,

M(e ,d exp [-ia.,16 .Dlr) d>. (10.15)

This righfhand side has the form of a double Fourier transform in space. It is given

bV [[, Lü(t,ai exp[-l({ .k)l dr: "f(k). If the transfonn were known for all k in
wavenumber space, we could invert the double integral and determine Aü ((, ro) completely,

as a function of (, from far-field observations. Unfortunately, (10.15) shows that the two-
dimensional transform is known not for all k, but only for the projection of ay /c on ) (we

are assuming that X is flat, so that { lies in the plane of )). The range of k we can recover

from far-field observations is therefore restricted to k parallel to X, and, since y is a unit
vector, lkl < a lc. It follows that we cannot find details of the seismic source with scale

lengths shorter than the shortest wavelength observed. The phase velocity along the plane

X of the plane waves in (10.15) is ro/lkl, and c < ar/lkl. So the underlying reason for not

being able to elucidate short wavelength features of the source is that the only waves which

can radiate to the far field are those whose phase velocity (along the plane X) is greater than

the medium velocity c. The waves with phase velocity smaller than c are inhomogeneous

waves trapped near X, and we investigate them further in Sections 10.2.3 and10.2.4.Herc,
we note that for a complete recovery of the source function Lu((,t), we need observations

at near field.

10.1.4 BEHAVIOR OF THE SEISMIC SPECTRUM AT LOW FREQUENCIES

As the frequency r,-l approaches zero, the Fourier transform Q (x, a-r) of the far-field displace-

ment waveform, given in (10.14), approaches a constant value:
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and also

fLü((,n : 0)- .l oOfC,t) dt: Lu((,t -+ oo),

^ü((,a): I oorr,,

o(x,ar --Ol: II,

exp(iat) dt

we have

Lu((,t --> a) dE. (10.16)
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Thus f2 (x, ro -+ 0) in the limit is the integral of the final slip over the fault area-
which is independent of y, since the effect of the radiation pattern has been accounted for

in a separate factor (see (10.6)). In other words, the spectrum (absolute value of Fourier

transform) of the far-field displacement waveform tends to a constant at low frequencies,

whose height is proportional to the seismic moment defined in equation (3.16). We leave

it as Problem 10.5 to show that the spectrum is flat at the origin. This result is true for

any Lu((,r) provided the final offset is the same, and the spectrum at low frequencies is

independent of details of the process by which the final offset is acquired on the fault plane.

If we make an additional assumption that the fault-slip velocity never reverses its

direction (i.e. ,that Lü does not change sign during an earthquake-n1s35sn4fle assumption

if there is significant friction still operating on the fault plane at the time when Az returns

to zero, so that no further slip takes place), then, from equation (10.13)' we find that O (x' r)

will have the same sign for all r. In that case, the Fourier transform f2 (x, ar) is not only flat

but takes its maximum value at at :0, and we say the source spectrum has no overshoot.

This result, which is again independent of the details of faulting, has been pointed out by

Savage (1912), Molnar, Jacob, and Mccamy (1913), and Randall (1913) in a controversy

triggered by Archambeau (1968) on the low-frequency behavior of the seismic spectrum of

earlhquake faulting. In contrast, the source spectrum of an explosion can have a prominent

overshoot.

If the area of fault surface ) is infinitesimally small and if the slip Au ((, /) varies as a

step function in time, then we find from (10.13) or (4.84) thatthe far-field waveform is adelta

function and hence that the spectrum is flat for the whole frequency range. Therefore, we

may say that for low frequencies where the spectrum is flat, the seismic source is equivalent

to a point source with a step-function slip. This simple source has been extensively used

in the single-station method of determining phase velocities for Love and Rayleigh waves

from relatively small earthquakes. Weidner (1912) compared the results obtained by the

single-station method with those by the two-station method for North Atlantic paths and

found that the step-function assumption was correct within a phase error of less than about

0.02-0.1 cycle for periods of 20-80 s and for earthquakes with magnitude 6 or less. The

same assumption was also used successfully in the determination of the focal depth of

earthquakes with magnitude less than about 6, using the amplitude (Tsai and Aki, 1971)

and the phase (Weidner and Aki, 1973) of Rayleigh waves. The step-function assumption

using free-oscillation data in the period tange 150-1200 s is supported by Mendiguren

(1912) and Russakof et al. (1991) for a deep eafihquake in 1910 in Colombia. A summary

of measurements on seismic moment and fault area was given by Kanamori and Anderson

(19'15) for many earlhquakes of various magnitudes.

10.1.5 A FAULT MODEL WITH UNIDIRECTIONAL PROPAGATION

As shown in the preceding section, observed waveforms in the far field alone cannot

uniquely determine the source function Lu((, t).It is therefore useful to establish a min-

imum set of source parameters that can adequately describe the source function. Limited

observations in the far field can then be effectively used to determine these parameters.

Let us first describe the fault plane as a rectangle with length Z and width I4z. The

rupture initiates at one end of the fault and propagates along the length L with velocity u.
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FIGURE 10.2
Unidirectional faulting on a rectangular
fault. (a) The fault plane. (b) Direction
0 :0 is normal to the fault plane,

and ü : 0 is the direction of rupture
propagation.

Setting the coordinate system ((r,1) parallel to the length and width of the fault plane as

shown in Figure L0.2,we specify the rupture propagation by

Lu((,,t) : f(t - (r/u) if0 < (r< L and g. (r.W,
(10.17)

-0 if(r<Oor(t> L, or (r<0or(zrW

Putting this into equation (10.13), we get

e(x.r) : [* ft i (,_ro _tr *Eflt*hyz\ ocro(r. (lo.ls)
Jo Jo '\ c u c /

Assuming thatW and (2y2 are small, and taking V as the angle between the direction to

the receiver and the direction of rupture propagation, we can rewrite equation (10.18) as

499

(10.19)

Sincethisintegrandrangesfrom jQ-ro/c)to jU-ro/c-LII/u-(cosV)/cl),S)(x,r)
givenby (10.19) is proportional to a moving average of f (t - rof c) takenover a time interval

o(x,r) :, 
Io' il,-b -4t(; - ry)lrr,
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FIGURE 10.3
The factor lX-1 sin Xl in the spectrum of an observed pulse shape can be thought of in the

time domain as convolutlon with a box function of temporal duration L(llu - c-l cos V) :
Lfl/u-c-11sin0cos@)].Thisisthe apparent durationofrupture,asdetectedbyreceiversalong
the direction (0 , Q) , for rupture speed u and wave-propagation speed c.

with duration LII/u - (cosW)/cl. Noting ttlat iG _ rolc) is the far-field displacement

waveform expected for an infinitesimally small fault, we see that rupture propagation over

a finite fault length has a smoothing effect on the waveform.

To find this effect on the spectrum, we take the Fourier transform of (10.7). Writing the

Fourier transform of f (t) as f (a), we get

O (x, a-l) : -iawf (a)e'"o'' 
Iot 

*n 
[,r<, (1 - cos V\l

, )loq,- ( r 0.20)

:ark,twL#.-o 
[, (+ - ;. ")l

where X : (aL l2)lllu - (cos V) /cl.The effect of the finiteness of the fault on the am-

plitude spectrum is expressed by X-1 sin X, which is depicted in Figure 10.3. This effect'

first discussed by Ben-Menahem (1961), produces nodes at X : 7r ,2n , . . .. The first node

corresponds to the period 2r f a: LlIlu - (cos V)/cl. An example of observed spectral

nodes is shown in Figure 10.4 for Love waves from the Parkfield earthquake of 1966 June'

observed at Berkeley, California (Filson and McEvilly,1961). The first node at T :225 s

is explained by the rupture velocity of Z.2knls, the fault length of about 30 km, and cos V

of about 1.

Forhigherfrequencies.theenvelopeof X-lsin X isproportional toar-l.Thjssmooth-

ing effect is weakest in the direction of rupture propagation (V : 0) and strongest in the

opposite direction (V : z). As a result, we observe more high-frequency waves at V :0
thanatV:tt.

Two additional source parameters are needed to complete the unidirectional rectangular

fault model. They are the final slip D and the rise time Z characteizing the slip function

/(r). Haskell (1964) used a ramp function

f(t):o r<0,
:DtlT 0<t <7,

- D T <t,

(10.21)
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FIGURE 10,4
Amplitude spectra of Love waves
from a series ol earthquakes in
Parkfield, California, recorded at

Berkeley. Califomia. at a distance
of 270 km. The main shock, with
local magnitude 5.5 (Ms:6.4),
shows nodes at 22.5,9.8, and
7.6 s. The last node is probably a

path effect, because it shows up
for all earthquakes, independent
of magnitude. [From Filson and
McEvilly, 1967.1

E,"

o

qrv
E

l0 20

Period (s)

FIGURE 10.5
Definition of rise time Z.

as shown in Figure 10.5. Taking the Fourier transform of f (t) and putting it into (10.20),

we obtain

(r0.22)

The effect of a finite rise time Z therefore introduces additional smoothing of the waveform:
for high frequencies, it attenuates the spectrum proportional to a-r . Thus the finite length
of the fault over which the rupture is propagated, together with the finite time needed

to complete the slip at a point on the fault, make the spectrum attenuate as .-2 at high
frequencies.

So far, we have introduced the following five source parameters:

Fault length ,L.

Fault width W.

ls2(x, r,-,)l : w LDtin 
X ll- ''-'| .Xl-T I

(D

(ii)
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(iii) Rupture velocitY u.

(iv) Permanent sliP D.

(v) Rise time Z.

The corresponding far-field displacement spectrum is given by (10.22). The spectrum is

flat near a :0, and the height of the flat part is proportional to DW L, or seismic moment'

For frequencies higher than the reciprocals of apparent rupture time LlIlv - (cos V)/cl

and rise time Z, the spectrum decays with frequency as ro-2.If the effect of finite width

is also taken into account, as done by Hirasawa and Stauder (1965), a spectral decay of

ar-3 should be expected. Another extension of the model often used in practice is to assume

that the rupture propagates from a point in the fault plane to positive and negative directions

along its length. This is called bilateral faulting and the corresponding seismic spectrum can

be easily obtained by appropriately superposing the results for two unilateral fault motions

propagating in opposite directions.

The seismic energy, spectral density, and near-field effects of the above five-parameter

model were studied in detail by Haskell (1964,1966,1969), andit is often called Haskell's

model. For many earthquakes, reliable estimates of the product of L, w, and D have

been made-and hence of the seismic moment (by assuming a value of the rigidity)' The

measurement of l, is easier than that of W or D, because its effect can be studied using

longer waves, which suffer less from complex path effects. The reliable estimation of D

and T require near-field data, which are usually difficult to obtain. Types of fault slip more

general than those of the Haskell model ale considered in Problem 10'7, showing that the far

field spectrum can still be regarded as the product of two factors, the first being associated

with an equivalent point source (and having spectral decay due to the finite rise time), the

second being due to the finiteness of faulting (and having spectral decay due to spatial

interference).
Once the fault area and fault slip are determined, one can make a rough estimate of

stress drop associated with the faulting, by referring to a crack problem of similal geometry'

With some exceptions we can summarize results roughly as the statement that for most

earthquakes the stress drop lies in the range from 10 to 100 bars, independent ofmagnitude'

The slip velocity @ lD across the fault also appears to lie in a limited range: from 10 to

100 cm/s. According to Abe's (1975) summary, the stress drop ao and the slip velocity

@ lD appear to be related via ao : Bp@ lT), where the coefficient of proportionality,

fp (: shear wave speed x density), is just the impedance for plane shear waves (see Box 5 '4

with angle "/ 
:0).

Equations such as (10.7), (10.16), (10.22) and extensions of them such as discussed in

Problem 10.7 provide the kinematic framework for interpretation of earthquake phenomena

across a range of different geometries and stress drops. Thus, equation (10'7) indicates

that if the slip velocity is constant, then the seismic radiation scales directly with the

size of the rupture. The simplest scaling is one in which slip velocity is constant; and

fault width, rise time, and final offset are all proportional to fault length. The stress drop

is then constant, independent of moment, ard Ms o< L3. Abercrombie and Leary (1993)

reported low-magnitude seismic data from a deep borehole in southem california, and

data from several other regions, in support of such a simple scaling law across a moment

range spanning 20 orders of magnitude. Other seismologists who have drawn upon data
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across a smaller but still significant magnitude range, for events all from the same region,
have in some cases reported a different result, namely that stress drop appears to increase
monotonically with increasing moment for events below a critical size, becoming constant
for events larger than critical (e.g., Shi et al., 1998). Heaton (1990) pointed out numerous
earthquakes with fault length much greater than width, for which the rise time was likely
to be independent of fault length, resulting in a different scaling law.

An extensive study of source parameters of major earthquakes in and near Japan was
made by Kanamori and his colleagues using the Haskell model. The result, as summarized
by Kanamori (1973), showed that the amount of slip and the extent of the fault area obtained
by the seismic method are in good agreement with those obtained by a static method,
using geodetic measurements for earthquakes caused by "brittle elastic" rebound. On the
other hand, for earthquakes attributed to "visco-elastic" rebound, the slip and fault area

were found to be significantly greater by the static method than by the seismic method,
indicating that the seismic event does not totally represent tectonic processes associated
with an earthquake. The completion of the Global Positioning Satellite system in the 1990s
permits subcentimeter determination of absolute locations of points nearly anywhere on
Earth, and Heki et al. (1997) made such a measurement of ground displacements at 16

stations in the vicinity of a magnitude 7.8 subduction zone earlhquake that occurred on 1994
December 28, off the Sanriku coast of northeastern Japan. During the ensuing 12 months,
the displacement of 15 of these sites grew to exceed the displacement that had occurred at the
time of the earlhquake at these same sites. These authors and DeMets (1991) interpreted the
observations as evidence for afterslip, somewhere on the fault plane that ruptured in the main
shock, rather than as an effect of viscosity in a lower layer. The motion between tectonic
plates is apparently accommodated by a continuum of processes, including slow-rupture
earthquakes, aseismic creep, and afterslip, as well as by more conventional earlhquakes.

10.1.6 NUCLEATION, SPREADING, AND STOPPING OF RUPTURE

The unidirectional propagation of rupture in Haskell's source model is an oversimplification
of faulting when we look closer at the nucleation of the rupture process. To make the model
more realistic, it is desirable to allow rupture to initiate at a point (rather than simultaneously
everywhere along a line segment) and then spread out radially (rather than propagate in a
single direction), until it covers an arbitrary two-dimensional surface on the fault plane. Far-
field waveforms from this type of source model, using a uniform rupture velocity, were first
studied by Savage (1966) using equation (10.13).

As shown in Figure 10.6, we shall place the fault in the plane 13 : 0 and assume that
rupture propagates from the origin in all directions with uniform velocity u and stops at the
perimeter of the fault plane X. Initially the rupture front is a circle described by p : ut,
but the final fault will have a perimeter given by p: pa(ö'), where (p, Q') are cylindrical
coordinates in the fault plane.

Savage (1966) assumed the displacement discontinuity was a step function in time with
final value LU (p, ö').In our notation and using Heaviside step functions, the model can

be expressed as
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Lu((,t): LU(p,0')H(t - plu)l(r - H(p - ph)1. (r0.23)
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FIGURE 10.6
The rupture starts from the origin

and spreads in the xrxr-Plane with
a constant velocity u. Initially' the

rupture front is a circle P : ut,büthe
final fault plane has a perimeter given

by p: pJQ). P is the observation

point, and an element dX of the fault

is shown at (p,Ö').

Putting this into (10.13), we find

a(x,r): II,m(e,,-ro-$ 
Y)) 

'"n,
f f / ro gsin0cos(@-d'): llotr ---t-JJ \ C C

x[1- H(p-n)]PdPdÖ',

where we used the spherical coordinates shown in Figure 10.6 for expressing (( ' 7)' Since

I f f*l 6(ax - b) dx : f (b la) la, the integration with respect to p gives

F / ,. ^^ \

I a (, _ Io _ YSsl ru@,q)tr- H(p - n\p dp
J \ c u/

fn

toru<------<Pb
Q./ u

t -'o
-0 for0< -*'n,

Q./ D

where q":l- (ulc) sin g cos(@ - d') is assumed positive everywhere; in other words'

u < c and the rupture is subsonic. [If u > c, waves would arrive b efote rgf c in the directions

(0,Q) for which q" is negative, because LUtQ - rolc)/(q,lu)'|))will be nonvanishing

for t < rnf c.l

--) mro,a) Qo24)

:(,-?) ^'(#r)*
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FIGURE 10.7
Slip function for a circular
fault with uniform slip.
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For subsonic rupture propagation, (10.24) can be written as

{l(x, t) : u2

*(;#r)
__t-a-,t O', (10.25)('-?) H(,- 9I

where the integral is taken over the range of Q'for which l(t - rolc)l(q"lu)u) < pa.

Suppose that the final slip AU is uniform except near the fault perimeter, and suppose

that we look at the beginning of the far-field displacement waveform, when / - rolc is small

and the range of integration for @' covers 0 to 2n. In that case, we see from (10.25) that

the displacement waveform is a linear function of time (a ramp function). The linearity will
hold until the rupture front reaches the perimeter of the prescribed fault surface.

Thus a subsonically spreading rupture with a uniform step-function slip generates a far-

field displacement waveform (/ - rolc) H (t - ro/c) until the stopping signal arrives from

the perimeter of the fault. The corresponding particle-velocity waveform due to this type

of nucleation is a step function with a discontinuity att:rolc. The acceleration is a ö-

function, reaching infinity at" t : rolc. The spectral density of acceleration, velocity, and

displacement are therefore constant, and proportional to ar-1 and at-2, respectively.

In order to see what happens when the rupture stops propagating, let us consider

the case of a circular fault with uniform slip, in which po - P6 (constant), LL/lp,Qtl:
AUe (constant). Then Lu(t,t) is a function of p and /, as shown in Figure 10.7. The

simplest result is obtained in the direction normal to the fault plane. For 0 :0, 4": 1 and

equation (10.25) shows that the integral with respect to /'is constant for u(r - rolc) < po

and vanishes for u(r - rsl c) > ps. In other words, the far-field displacement waveform

s2 (x, r) for 0 :0, which grows like a ramp function beginning at t : rol c , subsequently

has a jump discontinuity at t : r0/ c + pylu, when I (x, t) suddenly becomes zero. This

jump discontinuity gives inflnite parlicle velocity and acceleration. The spectral density of

displacement, in the high-frequency limit, will decay in proportion to o-r. A seismic signal

associated with the stopping of rupture was named a "stopping phase" by Savage.

For0 lO,q": | - (u lc) sin 6 cos(@ - @/) is afunction of @/, takingitsminimumvalue

in the azimuth ö' : 4' to the station and its maximum in the opposite azimuth Qr : Q * r.
Since AU(p, d') is constant and 4. is a smooth function, the integral in equation (10.25)

is proportional to the range of @/ for which [u(t - rsl c)]/q" . po.As long as the locus of

p : lu(t - rolc)llq"is contained inside the circle p - P6, the integration range of $' is 2n .
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FIGURE 10.8

FIGURE 10.9

Since the minimum of q 

"is 
at Qt - @, the locus of p : [u(t - rol c)]/4" will touch the circle

p: po first at ö' : Q, as shown in Figure 10.8. The growth LQ' of the portion of Q' for

which [u(r - ro/c)l/q"> pscanbe found from the geometry shown in Figure 10.9.

Expressingplastheradiusof curvatureof p:fu(t -rolc)llq"atthepointof contact,

and taking into account the relation

Lpo: ,o - ,fito - @oo0,\, - @olz)(to)2

and a similar relation for Ap', we get

. lp|Lp: Lpt - Lpo - 
\ä 

- ?)'o,r
Since Ap is proportional to the time Al after the two curves make contact, the inte-

gration range A,Qtwill be proportional to J tt, and the far-field displacement f2 (x, l) will
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FIGURE 10.10
Slip function for a circular f-ault on

which the shear stress is constant.

therefore have a sudden change proporlional to "/n. The corresponding spectral density

for displacement will have a high-frequency asymptotic limit decaying as o-3/2. Both the

particle velocity and acceleration will be infinite at the arrival ofthis stopping phase. Thus

the stopping phase (o< a-312) dominates the nucleation phase (a ,-2) at high frequencies

in this model. For the special direction I : 0 the stopping phase is even stronger (o( c, l).

as would be expected since the stopping of rupture becomes apparent, in retarded time, at

the same instant from all points on the perimeter of this circular fault as rupture ceases.

As can be seen from the derivation given above, the a-3/2 frequency dependence (for

0 + 0) applies not only to the stopping of a circular crack front but to that of any smoothly

curved crack front.
There are some unrealistic aspects about the above model as an example of shear

fracture. First, the slip is not consistent with the known static solution; and second, the

stopping of slip in the interior of the fault occurs everywhere instantaneously and therefore

has no causal relationship with the stopping of the rupture front. The first point was paftially

taken into account by Savage (1966) but was more fully considered by Sato and Hirasawa

(1913), who assumed the following slip function:

507

Lu(p,t): Y

_K

/ H(t - plu)lr- H(p * po)l

11- H(p - pül

for ut < ps

for ut > po,

(r0.26)

for0<x<7-k
(r0.21)

forl-k<x<l+k,

where

(T)

A (x, r) : ZXupfiln l0 - k2)21x2

: 2KDp|(rr l4)lU k - 1x2 1 t<I1t + D 2l

.:(#)
This model is constructed by assuming that Eshelby's (1957) static solution holds at every

successive instant ofrupture formation for a circular crack under uniform shear stress (see

Fig. 10.10).Puttingequation (10.26) intoequation(10.13)itispossibletocarryoutthe
integration exactly, and Sato and Hirasawa obtained the following compact result:

(ut)2 - p2
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FIGURE 10,11
Far-field wave forms
according to equation
(10.27); 6 is defined in
Figure 10.6. [From Sato

and Hirasawa, 1973.1

1.0 0.0

0:30"

0.0

9:60'
1.0

0.0

90'

(, . i- ?)] H@s - o), (10 28)

^ü(p,t): 
mln (, - +. +)

S-waves

t.0

where k : (ulc)sin 0 and x : u(t - rolc)l po. An example of S2(x, l) is shown in Fig-

ure 10.1 1. The initial rise of the far-field displacement is now proportional to $ - rsfcl2

instead of (l - r6fc) as in the previous case ofuniform step-function slip. The spectral

density corresponding to this rising part will have high-frequency asymptotic decay propor-

tional to ar-3.The spectral density for the total waveform, however, shows a high-frequency

asymptotic decay of at-2, rndicating once again that the stopping phase dominates the nu-

cleation phase at high frequencies. The a-2 decay is expected for this case because of an

additional a-rl2 dueto the square root dependence of the slip function on distance from the

crack tip, as compared with the uniform-slip case in which we obtained the o-3/2 decay.

A defect of Sato and Hirasawa's model is that particle motions cease at the same instant,

everywhere over the fault plane. Let us now look at another kinematic model of circular

rupture, proposed by Molnar, Tucker, and Brune (1973). The slip-velocity function for this

model is given by

-H
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FIGURE 10.12
Slip function for a circular fault on

which a "healing front" (bringing

motions to a stop) propagates inward

after the fault has reached its final
size.

where p0 is the radius of a circular ruptured area and AV is the relative particle velocity

(assumed to be constant over the area). The rupture nucleates at the center, grows radially in

all directions at a constant velocity u to the radius po, and then contracts back to the center

at the same velocity. This is a crude kinematic model of the spontaneous rupture process in

which slip starts with the arrival of the rupture front and continues until information from

the edges of the fault is radiated back to each point of the interior. The slip function of this

model is shown in Figure 10.12.

Putting the Fouriertransform of (10.28) into (10.15) and evaluating the integral, Molnar

et al.obtained the high-frequency asymptotic decay as .-2 to ar-3 depending on g. The

.-5/2 decay is expected for a stopping phase in this case because of an additional c,r-i due

to the linear dependence of the slip function on distance from the crack tip, as compared

with the uniform-slip case in which we obtained the to-3/2 decay.

As far as the initial parl is concerned, this slip function is simply a time integral of the

one for the uniforn step-function case (equation (10.23)). Therefore, the initial rise offar-

field displacement is the time-integral of linear increase. It is thus a parabolic increase, in

common with the model of Sato and Hirasawa.

Dahlen (I914) extended the analysis of rupture kinematics to an elliptical crack that

keeps on growing with the same shape. He used the following slip function, obtained by

BurridgeandWillis (I969)asanexactsolutionoftheself-similarproblemofanexpanding
elliptical crack:

Lu((,t): A,V (r0.2e)

where A V is the relative velocity across the center of the crack, and u and u are rupture-

propagation velocities in the (1- and (2-directions, respectively. As we shall see in Sec-

tion 11.1.4, the slip function (10.29) leads to a uniform stress drop on the fracture surface,

and thus is a solution of the crack problem as long as the crack continues to grow self-

similarly (see Box 10.1). If u: u, the above equation reduces to (10.26) for the circular

crack considered by Sato and Hirasawa for t < psf u. The initial rise of far-field displacement

is again parabolic, and the corresponding higtq-frequency asymptotic decay is proportional

to a-3. Unlike the models discussed earlier, Dahlen's model considers the rupture as be-

ing slowly brought to a halt as the crack edge propagates into regions of either increasing
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BOX 10.1
On the concept of " self-similarity"

A self-similar wave-propagation phenomenon is one for which there is no intrinsic length

scale or time scale, so that the phenomenon appears the same at all scales of space and time'

Commonly,thereisaresultingsimplicityinthespace_timedependenceofthepropagating
wave that can allow an exact solution ofthe displacements and stresses, for all (x, r)'

Forexample'thesolutiontoLamb,sproblem(thewavessetupthroughoutahomoge-
neous elastic half-space by an impulse applied to its surface) is self-similar' If distances

from the source are doubled in a fixed direction from the source, the shape of the exact

waveform at the second distance-the complete waveform in this case is made up from the

P-wave,S-wave,andRayleighwave-isderivedfromthefirstwaveformbydoublingthe
time scale. But if the impulsels applied at a fixed depth rather than at the surface, this depth

providesascalelengthandtheresultingwavesolutioniSnotSelf-Similal.
Thewavessetupinanelasticwholespacebytheslipfunctiongivenin(10.29)are

self-similar, as is apparent from inspection of the solution for this problem presented in

Section 1 1.1.4. Note that we can write this slip function in terms of a dimensionless time

coordinate tt:tlT and dimensionless space coordinates (i:(tlL, (l: I or2)' for our

choice of constants T, Lr, Lr.The resulting expression is

^u(€,t) 
: ^v,Fffi" [,' 

- 84"]
where u/ : (T lLt)u and u' : (T lLr)u are dimensionless parameters related to rupture

velocities. The ability to repfesent key variables in dimensionless form is another feature

of self-similar solutions.

lriction or decreasing tectonic stress. For such a slow stopping process he concluded that

the nucleation phase would dominate the stopping phase at high frequencies'

If we neglect the contribution from the stopping phase, the high-frequency limits of

the far,field spectrum can be obtained by putting the Fourier transform of (10'29) into

equation (10.15). The result is given by

4truu A,Vrr;-3 (10.30)
lQ(x, ar)l : r 2'

o)u2

-t5 sinz o cos2 Q- sin2 o sin2

wheredandQaredefinedinFigurell.T.Since(10.30)doesnotcontainparameters
involving the final size of the crack, this model predicts a high-frequency behavior that

is independent of earthquake size. on the other hand, if the stopping phase dominates at

high frequencies, the size ofthe earthquake will be a factor, and the high-frequency values

oi1 sz I fo. larger earthquakes will be larger than for small ones. We shall come back to this

ooint later in the discussion of scaling laws for seismic spectra'
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10.1.7 CORNER FREQUENCY AND THE HIGH-FREQUENCY ASYMPTOTE

As shown in preceding sections, the far-field displacement due to any reasonable kinematic
model of an earthquake is expected to have a spectrum with a constant value at low frequen-
cies and proportional to a negative power of frequency at high frequencies. Following Brune
(L910), we shall define a corner frequency as the frequency at the intersection ofthe low-
and high-frequency asymptotes in the spectrum. The far-field spectrum is then roughly char-
acterized by three parameters: (i) the low-frequency level, which is proportional to seismic
moment; (ii) the corner frequency; and (iii) the power of the high-frequency asymptote.

' Let us find the corner frequency as a function of source parameters for some of
the kinematic models discussed earlier. We shall find that a major disagreement arises

among various models concerning the relative magnitude of the P-wave and S-wave corner
frequencies.

Savage (1912) calculated the corner frequencies for P- and S-waves assuming bilateral
faulting with rupture velocity u and final fault length Z:

Lu((,t): DoG(t - (tlu)
: DoG(t * (r/u)

-0
(10.31)

where

G(t):O / < 0

:l-exp(-t/T) 0<t.

Assuming that the rise time Z is equal to the travel time of the rupture front over half a fault
width, i.e., T : W /2u, Savage obtained the corner frequency as a geometric mean of two
corner frequencies associated with the finite rupture propagation and the rise time. In this
case, the high-frequency asymptote is proportion aI to a-2 . Assuming further that u : 0.9 fl,
the corner frequency averaged over all directions is obtained as
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o<t,<L/2

-L/2=(r=0
otherwise,

for P-waves and

2r (f p) : JLg -a/"ftW

2n\fsl:JAß-B/'tLW

(r0.32)

(10.33)

for ,S-waves. For a normal Poisson's ratio, the above formula shows for this model of fault
slip that the P-wave corner frequency is lower than the S-wave corner frequency.

However, Furuya (1969) observed that the predominant period of S-waves is 1.3 to
1.5 times greater than that of P-waves for a given magnitude, implying that (f ,) is higher
than (/r), and he pointed out that the simple propagating fault model cannot explain such
observations. The majority of subsequent observational studies of corner frequency support

Up) > Ul.
The circular-crack model of Sato and Hirasawa also gives an asymptote like a;-2. as

discussed in the preceding section, but predicts higher corner frequency for P-waves than
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TABLE 1 0.1

Table of C, and C, values

appearing in (10.34) and (10.35)

ulp CP cs

0.5

0.6

0.7

0.8

0.9

1.11

1.25

1.32

r.43

1.53

1.53

t.70

1.72

1.76

1.85

for S-waves, in accordance with observations. Their corner frequencies averaged over all

directions are

2r\fp):CpqlR (10.34)

for P-waves and

2n(f i:CsPlR (10.35)

for S-waves, where R is the radius of the crack and C p and C5 are functions of rupture

velocity, as shown in Table 10.1.

In this case, (/p) is higher than (/r), and their ratio varies from 1.26 to 1.43 as u lB
increases from 0.5 to 0.9. Sato and Hirasawa attribute the inadequacy of fault models of the

rype considered by Haskell to the restrictive form of Lu((,t) given in (10.17) or (10.31)'

where the time-dependence is assumed to be common to all the points on the fault' This

assumption may be approximately valid for a long thin fault in which the slip function is

deterrnined by the width alone, but it is poor for an equidimensional fault in which the

rupture nucleates at a point and spreads out to all directions on the fault plane. Both their

model and the model of Molnar et al.(descrrbed in Section 10.1.6), which also predicts

(f p| > (/r), are free from this restriction. As we shall discuss in Section 11.1.5' some of

the important features of the solution to a dynamic problem of finite circular crack formation

are contained in the models of Sato and Hirasawa, and of Molnar et al'

On the other hand, formula (10.30) for a self-similar elliptical crack predicts lower

corner-frequency for P-waves than for S-waves. The formula is based on the assumption

that the nucleation phase dominates the stopping phase at high frequencies. The high-

frequency asymptote given in (10.30) is determined by the rupture velocities and the particle

velocity. Since the rupture velocities are given as material constants and the particle velocity

is determined by rupture velocities and the initial stress, the asymptote in this case is

determined independent of the size of the final ruptured areai at a given travel distance the

far-field seismic waves would have the same absolute spectrum for frequencies higher than
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the corner frequency, independent of earthquake magnitude, if formula (10.30) is correct.

This result appears to contradict observations on the scale effect on seismic spectra, as

discussed below.

An observed seismic spectrum is a function of source, path, and receiver. The simplest

way of eliminating the path and receiver effects is to compare seismograms obtained by

the same seismograph at the same station from two earthquakes with the same epicenter.

Berckhemer (1962) was able to collect six such earthquake pairs recorded at the Stuttgart

station for the period I93l-195I, and found a strong frequency dependence of amplitude

ratios between the pair. These data were interpreted by Aki (1967) using two kinematic

models: the co-square and ro-cube models. The ro-cube model is a special case of the

earthquake model suggested by Haskell (1966) and has the exact property described in

the previous paragraph (a high-frequency spectrum that is independent ofearthquake size).

The far-field displacement spectrum for the ar-cube model is expressed as

S(ro) : ,s(0)
(10.36)

ll + (a/oh)213t2'

where S(0) is proportional to seismic moment. The value of ar6 is effectively the corner

frequency, though in practice it may differ somewhat from the definition given previously

in terms of the intersection between high- and low-frequency asymptotes (see Shi et al.,

1998). As discussed in Section 10.1.5, if we assume similarity between large and small

earthquakes the seismic moment will be proportional to I3. The corner frequency will be

proportional to L-r, so we have
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,S(0) : const. x aro 
3 (10.37)

Once the above constant is fixed, a family of spectral curves is determined that will describe

the scaling law of seismic spectra. Neighboring curves shown in Figure 10.13 are separated

by a constant factor at frequency 0.05 Hz, so that the curves are designated by a uniform
scale of M. defined by Gutenberg and Richter (Appendix 2) using the amplitude of surface

waves at a period of 20 s. If the Ms of one curve is fixed, then M, is determined for the

rest. One can then find the amplitude ratio between two earthquakes of any magnitude

as a function of frequency. By trial and error, Aki (1967) found the family of spectral

curves, shown in Figure 10.13, which best fit Berckhemer's observed amplitude ratio. These

spectral curves share the same high-frequency asymptote in the absolute sense, independent

of earthquake magnitude. This feature is expected when the nucleation is responsible for the

high-frequency asymptote as in Dahlen's model: the effect may be observed for the initial
portion of the seismogram in which the effect of stopping has not appeared. In fact, the

body-wave magnitude ru5 (Appendix 2), defined by the amplitude of short-period (about

1 s) P-waves in the first 5 s, reaches a maximum value at around mb:6 anddoes not

increase with earthquake size (Geller, 1976). This is in agreement with the spectral curves

of Figure 10.13, which show that the spectral density at frequencies of 1 Hz and higher is

the same for a71 M. greater than 5.5.
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BOX 10.2
Allowance for finite fautting in calculating far-field body waves within

depth- dep endent s tructure s

Inallourchaptersonwavepropagationinheterogeneousmedia,wehaveusedverysimple
sources, usually a point ,our"". Eut to explain seismic data it is necessary to merge the

theories of wave propagation with the source theory we are developing in this chapter and

the next. provided we can make the Fraunhofer approximation, based on (10.12)' all that

is needed for purposes of computing the radiation from finite faulting is to know the slip

function tu((, z)l over the fault E, and the Green function G(x't; €' t)'
Thus, in the far-field it is often adequate to make the approximation

G(x, r;(, z) - G (*, r; o, ' - +) (1)

for that part of the wave field at x associated with waves having velocity c(() in the source

region,Hereyisaunrtvectorattheoriginofcoordinates(takenonx);andyisinthe
direction of waves departing from X'

Theapproximation(1)aboveisequivalenttoapproximation(10.11),whichwasused
in oeriuing (10.13). when the Green function is integrated over E, we need only make

an allowance for the far-field phase correction (i.e., the travel-time difference) between (

ando.Thisisappropriateforfar-fieldbodywavesandsurfacewavesindepth.varyingand
laterally-varYing media.

Forexample,inChaptergweobtainedintegralsoverrayparameterpthatgavefar-
fieldbody-wavepulseshapesindepth-varyingmedia.Pointsourceswereused,andoften
the source was characteri iedAy Vokt),together with some strike, dip, and rake (see, e'g''

(9.96) and (9.102)). To generalize tüese results in order to allow for finite faulting, it is clear

that one must rePlace

Mo@'t bv [ [-u mc'-) '*e f-l9g2.l d> Ql
rr, 'L cG) I

(assuming slip in the same direction everywhere over X)'

Note t|at y itselfis dependent on ray parameter, so that the expression (2) should appear

within the integration over p which characterized much of our numerical work in chapter 9'

However,formanypracticalpurposesitisadequatetoevaluate(2)atonerepresentative
value of y for each x'
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Period (s)

5000 1000 500 200 100 50 20 ro

FIGURE 10.13
Spectra of far-field body-wave displace-
ment observed at a fixed distance from
earthquakes with different M". The verti-
cal coordinate shows the colresponding
seismic moment. All curves share the
common shape of equation (10.36), and

similarity between large and small earth-
quakes is assumed. The broken line is the
locus of the corner frequency aro. [From
Akt, 1967; copyright by the American
Geophysical Union.l

The curves in Figure 10.13, however, do not seem to apply to the total seismogram. The
duration of seismic signal is longer for larger earthquakes, so if the spectral density is in-
dependent of magnitude, it follows that larger earthquakes should show smaller amplitudes

for frequencies higher than 1 Hz. This clearly contradicts the observation on peak acceler-

ations for 6 < M < 8, as shown later in Figure 12.13. Peak accelerations observed at short

distances are at frequencies higher than 1 Hz, and they are greater for larger earthquakes at

a given distance.

Fortunately, Aki's ar-square model gives more satisfactory results. This model has the

far-field spectrum given by

S(a;) : s(0)
(10.38)

1r+ {.1.ü2)'

The corresponding family of spectral curves fitting the Berckhemer data is shown in Fig-

ure 10.14. In this case, the spectral amplitude increases with magnitude M" for all frequen-

cies, in agreement with observation.
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FIGURE 10.14
Same as Figure 10.13 except that the

spectra share the corrrmon shape of equa-

tion (10.38). The broken line is the locus

of o-.r0. lFrom Aki, 1967; copyright by the

American Geophysical Union.l
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That the high-frequency spectrum for the @-square model should increase with magni-

tude without ceiling was expected because the at-z asymptote indicates the dominance of

a stopping phase at high frequencies, and the number of stopping points (or the length of

stopping loop) increases with the ruptured afea. There was a ceiling for the ro-cube model,

because the nucleation point is a single point for any earthquake'

1O.2 Kinematics of an Earthquake as Seen at Near Field

In the preceding section, we studied seismic waves observed in the far field, for which a

simple relation (10.13) exists between the waveform and the fault slip function' There are'

however, two major drawbacks to the study of seismic sources from far-field observation'

First, as shown by (10.15), the far-field waves carry information about the source function

only for that part of the space-time spectrum for which lat I kl > c, where ar is the frequency,

k is the wavenumber component in the fault plane, and c is the wave-propagation velocity'

A complete determination of the slip function requires observation near the seismic soufce'

Second. the waves recorded in the far field had to travel a long distance from the source'

0.005 0.02 0.1
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During the propagation, waves will suffer from attenuation. scattering. spreading, focusing,
multipath interference, and other complex path effects. One way of minimizing the path

effects is to make observations at a short distance from the seismic source, again leaning
upon the near-field data for more complete study of the source mechanism.

Ideally, we wish to measure the slip function Lu((, t) at various points ( directly on

the fault plane. Since such a measurement is almost impossible in practice, we must find
out how the seismic motion close to but at some distance from the fault is related to the slip
on the fault. This relation is complicated because the seismograms at short distances are

composed of far-field and near-field terms of P- and S-waves coming from each element of
the fault, as discussed in Section 4.2. These different terms cannot be isolated on the records,

and therefore the total seismogram must be computed for comparison with observations.

Such a computation is useful also for predicting seismic effects at the site of an engineering
structure. due to a nearbv earthquake fault on which the kinematic motions have been

prescribed.

10.2.1 SYNTHESIS OF NEAR-FIELD SEISMOGRAMS FOR
A FINITE DISLOCATION

The near-field seismic motion for a finite dislocation source buried in a homogeneous,

isotropic, unbounded medium can be calculated by integrating the solution obtained in
Section 4.2 for seismic displacement due to an infinitesimal fault dX across which the

slip is given as [u((, r)]. The solution for an arbitrary slip function over a finite fault surface

X(O can be obtained using equation (4.30), or equations (10.1) and (10.2), as
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u,(x,t): II,-l(30Ti, oy oyn, n - 6v in nT p - 6niynvn

" (" ('- ;) - F (, - i).:o (,-:) -;i (,-;))

)

;)l) ^' (.,' -
- niTqvqyp'D

r
vifr

^pp'7f

uq

4

2Yi, oT oT,

4r pra

l2v,n ^v -v-v- - 2v,n ^v'-1r'-ptp'q'q -'t'p,p.(
)^.(.'-

- 2nryrvn

) ^, (,,,-
- 3n;Yrv,

4npu2r2

l2v,n ^v^v^v^ - 3v,n -v'-tr"pt ptq'q -'t -pt p

(10.39)

( 4n pB2r2 ;)

.'try^t (e,'-:)

d>(<),

where F(r) : fi at' Ii' mG,/') dt/', n Lu((,r): [u], u is the fault normal, r:
lx - (1, andy - (x - Olr. Each of the terms underthe surface integral has a simple form
identifiable as waves propagating either as P or S, attenuating as a certain negative power

(
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FIGURE 10.15

of distance from the source. The waveform of each term can be easily calculated for a given

slip function Lu(<,t)-It is diff,cult, however' to make a general statement on the total

displacement because, at short distances, those terms arrive almost simultaneously' often

cancelingeachotherbecausetheyareofcomparablesize,sothatthebehaviorofthesum
of all the terms is quite unpredictable from separate consideration of individual terms' This

is especially true fbr motion close to the fault, because each term tends to infinity as r -> 0'

althoughphysicallyweexpectthesumofallthetermstobefinite(seeProblem4,l).
Early work or, 

"uulrirrg 
the near field of finite faulting was based mostly on the direct

numerical integration of (10.39) with respect to (. For a numerical integration of (10.39),

we replace the integral by a summation over grid points, assuming that the integrand varies

smoothly in the grid interval. Each term of the integrand in (10'39) contains two distinct

factors: one is a negative power of r : Ix _ ( |, and the other is a function directly derivable

fromAa((,t-rlc),*h"t"tisthewavevelocity'subsequentworkontheevaluationof
(10.39)hasentailedmakinganefficientchoiceofgridsize,andassociatedapproximations'
as we next discuss.

For r-, to be smooth over (16, rs*l), nIf romustbe negligible as compared to 1'

Therefore'thegridintervallmustbetakentobemuchsmallerthanr^infn,wherer.inis
the minimum distance from the observation point x to the fault plane X({)'

Thesmoothnessoftheotherfactorisdeterminedbytheslip-timefunction.Since
Lu((,t-rlc)containst_rfcinplaceofthetimevariableoftheslipfunction,itvaries

rapidly as a function of ( over a distance I if the slip function varies rapidly over a time

interval I I c . Forthis factor to be smooth over the grid interval t , I I c mttst be much smaller

than the minimum period ?h6 contained in the slip function' For example' if the slip function

is characterized by the ,lr"ii-" z, then I must be much smaller than cT. The choice of I is

restricted by the above two conditions to the shaded region of Figure 10.15' where },*,n is

the wavelength corresponding to l6n' and e and e' are small fractions'

For a relativety rarge ,_rf ," 
"är, 

,"tu" the above restriction on I to some degree by the

same approximate meÄod^ur"a fo, the far-field calculation in Section l0'1'3' If 12 is much

less than rnin 'i.*in, then from (10'11) applied to each grid interval we can put

r:ro_ e .€),

whereyistheunitvectordirectedfromagridpointtotheobservationpoint.Thenwecan
getacompactresultfortheintegralovereachgridinterval,assumingthatthefactorr_"is
constant. For example, if we set the time dependence of Au(( ' 

/) as exp(-iart)' the integral
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FIGURE 10.16

overthegridintervalwillhaveafactor(x-l sinx;ei".wherex :atl12(Ilu -c-t cosV),as

defined in Section 10.1.5. We can then sum these integrated terms over all the grid points.

The time-domain solution for a given slip function can be synthesized for the solutions

for various ar. The appropriate choice of I for this method will be in the shaded region of

Figure 10.16, which allows a coarser grid (larger l) for much of the spatial region than is

the case in Figure 10.15.

Both methods have been used in interpreting the records of strong-motion (or low-

magnification) seismographs located at short distances from earthquakes, and several inter-

esting results have been obtained from comparison with observations. For example, for a

Haskell-type moving dislocation (10.2L) with slip motion parallel to the direction of rupture

propagation, it was predicted that the displacement near the fault in the direction pe{pen-

dicular to the fault plane should have an impulsive form with amplitude being a significant

fraction of the amount of slip and with width being nearly equal to the rise time. Such

an impulsive displacement with the expected sense of motion was actually observed by a

strong-motion seismograph located only 80 meters from the San Andreas fault during the

Parkfield earthquake of 1966 June 28. Figure 10.17 shows the perpendicular component of

the acceleration, velocity, and displacement. A slightly different displacement record was

published by Housner and Trifunac (1967), who used an integration technique different

from the one used to obtain Figure 10.17. Figure 10.18 shows the theoretical displacement

seismogram synthesized for a unilaterally propagating fault. The rise time and slip for the

models that fit the observation are about 0.4-0.9 s and 60-100 cm, respectively. Although

these estimates of source parameters had to be revised by later work of Bouchon (1919),

who also included the effect of a low-velocity sedimentary layer, the successful comparison

between the theoretical and experimental results encouraged seismologists to pursue further

the synthesis of strong motion near an earthquake fault.

Numerical integration methods were also used by Anderson and Richards (1975) in

a comparative study of the near-field motion for Haskell's model with that calculated for

several different kinematic models of faulting. They found that it is often difficult in practice

to determine the slip function from kinematic modeling, even when several records of

ground motion are available within one fault length from the source region.

In order to simulate ground motion in Southern California associated with a hypothet-

ical large earthquake on the San Andreas fault, Olsen et al. (1995) modeled a strike slip

source kinematically with Äri taken to have a gaussian shape, moving along strike with

a rupture velocity equal to 857o of the local S-wave speed. They used finite differencing

to solve for the wave propagation in an inhomogeneous crustal structure described by a
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displacement observed at 80
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fault in the direction PelPen-
dicular to the fault trace during

the 1966 Parkfield earthquake'

lFrom Aki, 1968; coPYright

by the American GeoPhYsical

Union.l

cm/s 0

-50

cm0
-10

-20
-30

-40

ll I Accereration

Ilt\
.tt I llll .4. Art A "^N

I
N 65'E-

- 

^/\^

Velocrty

\,i\l
Y

N 65"E

Displacement

-'.,-....._

-
't-

N 65'E

Itrttl
5s

lr

FIGURE 10.18
Synthetic displacement corresponding to the observation shown in Figure 10'17 for a right-lateral

strike slip fault propagating *itft fup'ture velocity 2.2krnls' [From Aki, 1968; copyright by the

American GeoPhYsical Union.l

three-dimensional grid with 576 points along strike, 352 points perpendicular to strike' and

116pointsinthedepthdirection.BodywavesandSurfacewaveswereincluded,andthe
finite difference solution was integrated for points on the gridded fault surface' and over the

source duration. The simulation of ground motion over about 20,000 km2 of crustal surface

for a duration of two minutes took about 24 hours on a machine with 512 processors' They

found that the ground motion is amplified by a factor of about 2'5 at some locations' over

that for a uniform layered model with overall similar properties'
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Such numerical-integration methods described above can be very useful and are entirely

appropriate when crustal structure is well known, but they are time-consuming and do not

always give good physical insight. Thus one cannot generalize the behavior of seismic

motion. It must be calculated for each specific case. This limitation is especially severe

for high-frequency waves.

To overcome this limitation, compact, exact analytic solutions have been sought for
simplified source models. For example, Boatwright and Boore (1915) and Sato (1915)

showed that analytic solutions may be obtained for Haskell's model in the case when the

fault width V[ becomes zero. The other extreme model is the case when V/ becomes infinity,
reducing the problem to two dimensions. This reduction may be justified for frequencies

higher than a certain critical frequency /l determined by the minimum distance /min to the

fault from the station and by the width lV of the fault plane: if the station is close to the

fault plane, the seismic motion will be independent of W for frequencies higher than f".
For two-dimensional problems, we can find compact and exact solutions more easily, as

shown in Sections 10.2.3 and L0.2.4. The result will be useful for understanding the high-

frequency motions-especially the nature of ground accelerations near the fault, which
could not effectively be studied by the numerical method described above.

10.2.2 HIGH-FREQUENCY MOTIONS NEAR A PROPAGATING FAULT

To gain physical insight into the near field of a propagating fault, we shall consider greatly

simplified models and obtain analytical solutions for the resulting motions. Let us put the

fault in the zx-plane, with its rupture front parallel to the z-axis and propagating in the x-
direction, as shown in Figure 10.19. For a nearby observation point on the xy-plane, the

effect of the width of the fdult on high-frequency motions may be neglected and we can use

the solution for two-dimensional problems in which the fault width is set equal to infinity.
This simplifies the analysis greatly, because every quantity becomes independent of z.

We shall consider two basic types of propagating faults: anti-plane and in-plane. For

the anti-plane type with rupture propagation in the x-direction, the slip is in the z-direction

as shown in Figure 10.19, and the resulting displacement has a component only in the z-

direction. In crystal-dislocation theory, this is called a screw dislocation, in which the slip

direction (Burger's vector) is parallel to the dislocation line. Ifthe faultplane is horizontal,

the resulting motions are composed solely of SF1-waves. For the in-plane type, the slip is in

521
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the x-direction, and the resulting displacement has x- and y-components, associated with

both P- and SV-waves. In crystal-dislocation theory this is called an edge dislocation, in

which the slip direction is perpendicular to the dislocation line. When the edge-dislocation

line moves in the direction parallel to the slip, the movement is called gliding.

10.2.3 ANTI-PLANE PROBLEMS

As the simplest anti-plane problem, we shall consider the case in which phenomena appear

to be stationary if looked at in coordinates

xt:x-1)t, y':y, tt:t,

which move with a constant velocity u. Such a case is possible for a semi-infinite fault plane

propagating with velocity u from the time -oo. The condition on the discontinuity in the

displacement w(x, y, /) across the fault plane is given by

w(x,*O,t) - u(x, -0, r) : A,wH(-x'), (10.40)

where F1(x) is the unit step function. The stress is assumed to be continuous, so that

pY,*.*0. t) : r pt". -0. rrdy oy

The equation of motion for an isotropic homogeneous body reduces to a wave equation

for w:

| 32w 02w E2w-fr ,r: # + av'z' (ro'42)

Using the new coordinates, and applying the stationarity condition E f 3t' :0, i.e.,

aaaa
-:- 

:-l)-,
At \tt \xt 3x'

equation (10.42) can be rewritten as

/ u2\ a2u, E2wlt_ j_1" * +_=:0.
\^ Bz ) 0x,2 ay, _

(10.41)

aa
dx ox

do
:: ;l'dy oy'

(10.43)

For u:0, this reduces to the Laplace equation and its solution for boundary condi-

tions (10.40) and (10.41) is based on properties of log(x' * lyl) and is well known. We

use the fact that the imaginary part of log(x'* iyl) satisfies the Laplace equation, so the

solution of (10.43) when u : 0, that is discontinuous (but with continuous derivative) across

):0is

v
yl

w\x'.y')-Atanll for some constant A.
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The function tan I here is taken to lie in the range (-n,t). Since r.u(-x', y/) is a solution
of the Laplace equation, w1x' 1Jt - vl 82, y') will be a solurion of (10.43). Here we have

assumed subsonic rupture propagation, u < B . Our solution of (10.42) is therefore given by
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where the constant A has been assigned the value

conditions (10.40), requiring the continuity of u.r

because (10.44 does correctlv sive

w(x,y,t):Q

yG;Ftp
(ro.44)

x-ut

Lw / (2n). This satisfies the boundary
everywhere except at y - 0, x < ut,

A,w

z

Aut

aty*0,x>ut

aty:+0,x<ut

aty--0,x<ut.

Since the stress comDonents are

-xz
l.L Lw /1-;lB'.y

zTt

pLu
f 

-_t' 2n

(x - vt)2 + (1 - ,z1Bzlrz'

,/I:ATP @ - ut)
(10.45)

(x - ut)z + (1 - ,21 Bzyrz'

r' vanishes at y - 0. and the condition (10.41) is satisfied at y : Q, whst.

(10.46)

The stress ryz on the plane y : 0 is an odd function of r - ut, and becomes -oo behind
the tip and +oo ahead of the tip. Note that r, vanishes when the rupture velocity is B.
Equation (10.44) was obtained by Frank (1949), Liebfried and Dietze (1949), and Eshelby
(re4e).

The particle velocity is obtained from (10.44) as

3w A,w yvJT:GJB2
(r0.47)At 2n (x - ut)2 + y2i1 - u2l p2)

The peak velocity occurs at x : ut, and the peak value is (Lw l2n) ' fu lfyJT -FTFll.
The peak value tends to infinity as the rupture velocity approaches B for this semi-infinite
crack. It decays as the inverse ofdistance from the fault.

The acceleration can be obtained from (10.47) as

3w t, Jt-iFJfi'Yz-Pay-*2n x-ut

32w

3t2

tw. zy(*-yüy2JT-,PTP
2r [(x - ut)z + yz(t - u2 / p\12
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The oeak acceleration occurs at x - ut : 1y 1J1\{t -iP@' and is

.,2

9.,ß y2tl - t)21 p2\

The peak acceleration also tends to infinity as the rupture velocity approaches B. It decays

as the inverse square of distance from the fault.

The nature of motions in the near field of a propagating dislocation may be better

interpreted from their spectrum. The Fourier transform of 0w l0t at x :0 can be obtained

by residue evaluation at poles t : tiy fT=G I fi I u. and is equal to

This shows an exponential decay with both y and o, indicating that they are composed

of inhomogeneous plane waves trapped near the fault plane. Thus, for a subsonic rupture

propagation with uniform velocity that starts at time -oo and continues to time *oo, the

near-field motion decays quickly with the distance y from the fault plane; the peak velocity

decays as y-1, and the peak acceleration as y-2.The spectrum decays exponentially with

increasing frequency, as expected for inhomogeneous plane waves'

Next let us introduce simple models of starting and stopping in the fault propagation,

and see what will happen in the near field. To study the effect of starting, we shall replace

(10.40) with the following boundary condition:

u(x, *0, t) - w(x, -0,t) : 6* (10.48)

which corresponds to a step-function slip starting from x :0 at / :0 and propagating

in the *.x-direction with velocity u, as shown in Figure 10.19. Since the motion is not

stationary in the moving coordinates, equation (10.43) no longer applies. Expressing the

Laplace transform of u(x. Y. f) as

u(x,y,tle "'dt,

ry)

we rewrite the equation of motion (10.42) as

s2 32w ozw

-';J'F2* - a*z oy-

Taking the Laplace transform of the boundary condition (10.48), we have

u(x. *0. s) - ur(x. -0. s) : L* ' l-'*'u H\*l-
.t

"t ^,(-,,, ,,,

w(x,y,rr: I

A.w

L̂N

I
;-ZT

H (t - t) uat,

(10.49)

(10.s0)

Since

e-ttl' H (x) :
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which can be obtained easily by residue evaluation of the pole at k : i s / u, the boundary
condition (10.50) can be rewritten as
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(10.sr)

where we have used the antisymmetry with respect to y: w(x, -!,t) : -w(x,y,t).
To meet the above boundary condition, we assume the solution of (10.49) has the form

w(x,y,r, :,/* e(k)eikx-uv dk,

where u2 : k2 * t2 / P2. Q(k) is determined by putting ), : *0 and comparing with (10.51).
The result is

rir(x,*0,s):-u(r,-0.s): y [* ..,"01. ,,dk,arzs J_oo tlK-ts/u)

u(x,y.r,:# I:ffitr,
_ _ A, [* "'^r-', or.

4ns J *i(k-is/u)
The stress p(öw l0y) is continuous at y - 0.

y>0

y<0.
(r0.s2)

Equation ( 10.52) has a familiar form to which the Cagniard method is applicable (Mitra,
1966; Boore andzoback, 1974). Transforming the variable k to r by the relation

-st:ikx -
(I0.5D is reduced to

Lw f-t (x.y.s): - ^ |zft Jo
^ Jr, --;W cos d _ rr sin g

t/t'-12/B2sin0 *i(r cosg -r/u)
. H(t -r/f) e-"

-.1-
p-eq, -"

wherex : r cos 0 andy: r sin 9. Sincethe above equationnowhastheformoftheLaplace
transform for s u (x, y, s), the corresponding time-domain solution 0w (x, y , t) I 3t can be
identified as

\w(x,y,t) _ Lw (t2 - 12/p2) sin g cos 0 - t sing(r cos 0 - r/u)
At 2n (t2 - 12 I p2)sin2 d + (r cos d - r lu)2

(10.s3)
.. H(r -rlp\

Jt2 - rzlBz

This equation reduces to (10.47) for the dislocation propagating from / : -oo if we
make 0 small and x --> ut.In other words, the near-field motion at the time of arrival of a
rupture front is approximately explained by the simple solution given in equation (10.47).

k2 + s2/82 y,
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The new solution, however, contains an additional sharp waveform originating from

the starting points at / :0 and propagating with the velocity of shear waves. The particle

velocity is unbounded at t : r I F, where it has a square-root singularity. Near t : r I p,

( 10.53) becomes approximatelY

0w A,w

-:-At 2n

sin I I H(t - rlp) (10.s4)
Wr' - *til Am J-, - ,lP

This wave attenuates with distance as ll 
",F, 

representing a cylindrical wave that originates

at the starting point of the fault propagation, and shows a radiation pattern given by

sin7l(Blu - cosg). For example, the x-direction along which the fault is propagating

is a node. The spectrum of particle velocity 0w /Et given in (10.54) has a high-frequency

asymptote of 1/Ja.
The acceleration associated with this "starting phase" has a singularity of the form

(t - r 1 B1-z/, n Q - r / B) near the shear-wave arrival, and the corresponding spectrum has

a high-frequency asymptote ol Jo.
If the slip function is a ramp function (equation (10.21)) instead of a step function,

the peak particle velocity will be finite, but the peak acceleration will have a square-root

singularity att:r/F.
The effect of stopping can be studied by superposition of another moving dislocation

starting at, say, x : L at t : L lu, propagating with the same velocity u, but with opposite

sign of slip. This will annihilate the fault ahead of x : L, and gives the solution for a

finite fault that started at x : O and stopped at x : L. We then obtain another singularity

propagating from the stopping point as cylindrical waves. The nature of this "stopping"

phase is nothing but the "starting" phase of the superposed second fault. The equivalence

here of stopping and starting is due to the unidirectional nature offault propagation. Ifthe
rupture starts from a point and grows over an expanding area, the two effects will be quite

different, as discussed in Section 10.1.6 for the far field.

Note that all the two-dimensional anti-plane faults in this section generate S//-waves

alone.

10.2.4 IN-PLANE PROBLEMS

The simplest in-plane problem (Fig. 10.19) is the semi-infinite fault plane moving with a

constant velocity u from time -oo, and it generates both P-waves and SV-waves. We shall

consider the case of a step-function slip, in which the boundary condition is written as

u(x, *.0, t) - u(x, -0, l) : Lu ' H (-x'), (10.55)

where x' : x -'ut. The y-component of displacement, u(x,!,t), and the traction on the

fault plane, are continuous across ] : Q.

The displacement components that satisfy the equation of motion in the in-plane

problem can be written in terms of two scalar potentials as

_ atb

öy

a0

8x

a0

äy
,aü-a,u(x,y,t): u(x,y,t): (10.56)
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(see Section 5.1 for development of two scalar potentials for two-dimensional P - SV
problems). The potentials @ and ry' satisfy the following wave equations:

r a20 a2O , aze I a2rb a2ü , arü

"? arr: Arr-| Ayr' et art 
: 

A*, 
-r 

Ayz'

where cv : \ß1, + 2tD/p and B - Jffi are P and S velocities, respectively. Using the
moving-coordinate system (compare with the development of (10.43)), the wave equations
can be rewritten as

/ ',2 , a2ö , a2O ^ /, u2 \ a2,y' , a2,lt(l-il= +3:0. tr-; | 
- 

-t--=:0.
\ cY'/ ox ' dY' \ P',/ dx'' dY-

We consider here only subsonic motion, i.e., u < a and v < B.
The above equations have solutions of the form

exp(ikx' +/1* u2/a2ky) forQ, and exp(ikxll for lr.

Since there are no sources of waves at infinity, we require that Q and ty' propagate away
from y : 0. For y > 0, then, we introduce coefficients ,6 and ,i, in terms of which
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6 : $ exp(ikr' - ,F- vzlaz 1t<1y1, ü : rl, exp(ikx' -
and similarly for y < 0,

(10.57)

4t: S exp(ikxl -l ü:üexptlkxl*

As usual, we express the displacementu,u in terms 
"f 

,ir, rlr,,), and ry' using (10.56).

The stress components rru and zvv are related to displacement by

ryy:L(Y*3)*2py. r,y:F(3.3) c0.581\äx 3y/ 3y 'r \Ay dx/

The condition ofdiscontinuity for z (see (10.55)) and the condition ofcontinuity for u, r,r,
ryy give four equations to determine four unkno*n" $, rir, ö, and r2. fne continuity of u

and r", imposes the following constraint on ($ + d) anA fr| - D,

-rlt- u2ld2(6 +dl + i(,i, -rl.i:0,

2iJ | - u2/ot2(6 + a) + e - ,21p2)(,1, - ül:0.
The determinant of coefficients here is

7 - u2/ B2 ky)

I - u2 / Bz lkly),

t - u21uz 1tc1yt, | - u2 / B2 lkly),

| -J ts]1* ^ ' , ,.,1: -,f - ,,j*, .u2 /p2.l2ik\/I-121q2 2-,,
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and it does not vanish as long as u + s, so we must have

Q -t Q:0, ,j, - ü :o'

From this, we find thaI" u(x,y, /) and rnr(x,l, r) are odd functions of y, and u(x, y,t) and

t"n(x, !,/) are even functions of y. since the function 7y) must be continuous at y : 0, it

must vanish at Y : Q'

7y):o aty-0. (10.59)

Since u is an odd function, the discontinuity condition (10.55) can be rewritten as

Arr Lu
r(x.*0. t):-u(x.-0. l): --91-1 '1 :- 

,1*-
L -JL

.IKX

' dk. (10.60)
IK

*n";:J 
ä:T:ffi|]J?äff;'. (10 60), we can determine 6 a'd,ir ror each ft and

express u and u as an integral of (10.57) with respect to ft. The result for y > 0 is

u(x, y, t) : - *t l,:::,' l#.-, 6r' -,w trl)
_(fr2 _!2t2) "-r(_1t_,lortl.r),)] eikx, .4!,

u(x, v, t) : - "; L:::,' l4 l -,t- *r (-rt' -'t"' roo)

It=L 
"-, ([-r ,o'rkly)] r sign(Re k),'o'' #,

r::,,

where sign(Re k) means the sign of the real pafi of k. Putting y : 0+, we get the desired value

u(x,0, t) : (Lu 12) ' H (-x'). The integrand decays exponentially with k and y' showing

that they are superpositions of inhomogeneous plane waves' as in the anti-plane case' We

expect, therefore, that they are trapped near the fault plane and attenuate quickly with

distance from the fault. Both components show a similar amplitude spectrum, but there

is a n l2phase shift between the two components indicated by the factor I in the integrand

for u(x, y,t).If u(x,y,r) is antisymmetric withrespect to xt:0, then t)(x'y'r) willbe

symmetric. We shall see shortly that for the step-function slip, the transverse component

displacement u(x, y,r) shows an impulsive form with a logarithmic singularity at x' :0.
To avoid the singularity at k : 0, we shall first evaluate the particle velo c\ties 0u f 0t and

Bu /0t. Since ä/är introduces a factor -iku in the integrand that removes the singularity,
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we can put € : 0. Then the integrals will be either of the form
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: 
lo* "*' ('o'' -
z'/T-&IFy

dk + Io *"*n (,0*' *,[ - rW r,t) ar,

(10.61)
x'2 + 11- u2la\y2

or of the form

llt "tr"rnr "^n (;r"' - [ - ,W

: 
Io* 

i 
"*v (iw' - ,,tf - ,w ky) t)dk

(r0.62)

_tfr2 - u2lzt Jt-irF y 
1- u, t, + y urlBzrrz I- (10.63)

vctv) at<

on - I:*t "*o (ir,*' +

zx

xn+ 0 - uTqay,

We can alsorecognize thar (10.61)is the derivarive of _2tan | (JT-i,F ylx') and

that (IO.62) is the derivative of log[x' z + Q - u2lo?)y2] with respect to -{/. Using these

relations, we obtain the particle velocity for y > 0 as

öu(x.y.t\ Iu(x.y.r) u tu I 92 Jl -iTF y

At - 0x' r( lr' ,'z + 0- u2lq\y2

_ (p2 - r2lz) ,' I

and the displacement for y > 0 as

nu f ß2 -, Jt - ,1o' ' v tß2 - u2/21
a(r.)'. 1): _ | , run '- - uz tan

7( lut x'

Au 1ß2 t 
- 

/ ,t
u(x.,y.,, : X lä/t - u2/.,2rog (x'' + rt - r'1o'ry')

x'
x'2 + 11 - t)z la\yz

-\',E-aP

0.

v

(1

x'

64)

'2+(r_ ,tlp\y')

,_ rWor)

lf2 -u2l2l ,o*1,
u2Jl-u2lp,2 - \
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The above forrnula was first obtained by Eshelby (1949), and turns out to be valid for

y < 0 as well as tbr y > 0. Values of tan-l lie in the range (-r ' 
z)' so that there is a

step discontinuity in z of amount aa across ) : 0 for x' < o' This is the fault plane' and

(10.64) correctly reproduces the discontinuity (10.60). The transverse component u(x'y't)

shows an impulsive symmetric form with a logarithmic singularity log lx'l at x/ : 0 or

x : r)t.This result qualitatively agrees with the result of the numerical solution discussed

in Section 10.2.1 in relation to the record ofthe Parkfield earthquake'

The stress components may be obtained from (10'63) and (10'57) as

2pt A'uB2
T..: -------;-JrD'

u2ld2 - ,21zp21Jt -iF1o2 y 
,'T

x,z + (l - ,z 1a2\!2

1t- u2lzBzy{t -i'F
x,2+(t_u2lfrz)yz

1t - u21zBz;J;IEl
x,2 + ll - uz 1a2)!2 tr+(_u2lp2)y2 l'

Jr:qE/_ _
x,2 * (l - u2 la2)y2 1 -GlF 1x'2 * (r - u2l P\yz)

u(x,*0,t) - u(x,-0,t1: L'u' H(t - xlu)H(x)' (10.66)

^t-
211. LUB' 

I
trrr 

- a IIru' L

"t-21t LuP" 
ITry: -Trp- |
L

1t - u21zB21

l
1r-u21B2;2x'

As imposed by the boundary condition (10'59), 'r) 
: 0 on the fault plane y : 0' and z"' is

continuous across ), :0, where

,,,:'-#ll t','1"'- (1 - ,'1zB'y 1 li '1 l.')' (i0'6s)

Thus, zr,,, has an (x')-1 singularity at the crack tip' reaching -oo behind the tip and

*oo ahead of the tip. Compa.ing the bracket t I of (10'65) with the expression given

in equation (5.56) for determining the phase velocity of Rayleigh waves in a homogeneous

half-1pace, we see that the in-plane shear stress across the fault plane vanishes when the

crack tip propagates with the Rayleigh wave velocity'

po, Ä" particle velocity, the spectral contents and attenuation with distance are quite

similar to those obtained earlier for the anti-plane problem. For example, the peak velocity

decays inversely in proportion to the distance from the fault for both components' on the

fault, the particle vetocity is a ö-function for the parallel component and proportional to

(x -' yq-i for the transverse component. Both functions have the same constant spectral

density, but they differ by n 12 inphasefor all frequencies. off the fault, the high-frequency

asymptotehasanexponentialdecay,asexpectedforinhomogeneousplanewaves.
Let us now consider the effect of a sudden stafi to the in-plane faulting, by solving a

problem similar to the one studied in the anti-plane case (equation (10.48)). The faulting

starts at x : 0 and propagates in the x-direction with velocity u' The boundary conditions

are

with continuity for u, rtr, andzn, as before' Again u and r, are odd^functions of y' and u

and rrrare even functiois. It then follows that z' must vanitn:t , 
:.91 

us in the case of the

fault propagated from t : -@ (see Problem t+.2,tor a general result in three dimensions)'
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Working with potentials (10.56) and the Laplace transform, e.9., Q@, ), s) :
I 0@,y,t)e-'t dt,theequationof motionis satisfiedif thepotentials satisfythefollowing
wave equations:

az6 . a20 s2 , a2ü , a2rb s2 ,;--r_: )y. ;-;-r {:;v.dx. dy. ox' dy- p'

The solutions of these equations are of the forms eik'tY! s16 tikxrvv, where

y2:k2 +t2/o2, and v2:k2 +t2lp2.

The boundary condition for u(x, *0, s) can be obtained by taking the Laplace transform of
(10.66):

r/(x.+0.s):-rl(x.-0.s): L: e-sx/u ,r*r:lL [* ,.:'o'!0, .. (10.67)
z s +Tfs J 6t\K-ts/u)

This condition and the vanishing tuu at y: 0 determine the solution for y > 0 as

..,.. ., -\ _ L! [* (f'!t r-r, _2P2k2 +s2 r-,t\ likr dk,/(r.Y.t,:-i, 
J__\ s, N " )itf _ir/ul

L,u f* | p2 ., vv Qp2k2 + s2) ., ,ul "ikx 
4pu("r'./.st:-2n 

J _lj,r, ,rr, tKe "')tG_trlr)

To each term of the above integral, we can apply Cagniard's method. By transforming

the variable k to either

7 : !;ikx -f vD or , :!6rk, + ,y)
s,t

and identifying the resulting integral as a Laplace transform, we obtain

)l H(t - rta)-);m
r-

. I tol+ tt2p\(r sine*icos e,rt,-iW)1 H(t - rlB\ |T-t t________________ (

L t /u - pz 
) ,J,' - ,21 Fz.f , ro.osr

äu(x.y./) p2 L, [^ ltr?+r/u2) p,l Htt -rlal
0r 7( t L ilu-pt ),rtt-;W

_*,1@3* ttrp') orl llL_:utl .

L ilr-p, )Jtr-r2lß2J
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where (x, /) : r(cos 9, sin 9), and

sin9* cos 9,
,t
L_

r
1

Pl:'
1

P2: -r
t

sin0*l-cos0

The above formulas were obtained by Ang and Williams (1959) and were used by Boore

andZoback(|9/4) in the interpretation of accelerograms recorded at Pacoima Dam during

the San Fernando earthquake of 1911February 9.

For points that are distant from where the faulting originates, the motion near the fault

should look like the one obtained earlier in equations (10.63). Actually, if we make both

y lr (: sin 9) and r - u/ small, equations (10.68) reduce to (10.63). That is, the near-field

motion at the time of arrival of the rupture front is approximately explained by the simple

forms given in (10.63).

Equation (10.68) contains additional arrivals propagating as P- and S-waves from the

starting point of rupture. Making t - r lu small, we find P-waves of the form

0u
COS Uat:x

3u
s1n u

At

Lu F2 sin20 H(t - r/a)
(10.69)

n a2 21alu - cos 9) Jt - rlaJ2r/a

and making t - ,l F small, we find S-waves of the form

8u
-s1nuAt:

ou
cos u

At

cos20 H(t - r/fr)
ifp/, - coso) 

'fi=VlPrZlf$

Lu
7t

(10.70.)

As shown schematically in Figure 10.20, the radiation patterns of these waves have a double-

couplesymmetrymodifiedbythefactor (alu - cosO)-1 forP and (fllu - cosg)-lforS.

They are cylindrical waves, attenuating as ll..,G. As in the case of the anti-plane solution,

the particle velocity has a square-root singularity at the onset. The accelerations associated

with these "starting phases" are also unbounded at the onset, where they have 3f 2 power

singularities. If the slip function is a ramp function, the peak particle velocity will be finite'

but the peak acceleration will have a squa"re-root singularity at the onset.

As discussed in the preceding section, the effect from stopping of the fault propagation

can be obtained by superposing another moving dislocation. The stopping phases are similar

to the starting phases in the case of unidirectional fault propagation'

For the Haskell model with a uniform slip function over a rectangular fault, Madariaga

(1978) obtained an exact analytic solution for motions at any point in an unbounded, elastic,

homogeneous medium. The solution consists of (i) cylindrical waves from the suddenly

appearing initial dislocation line of length W andfrom the sudden arrest of rupture, and (ii)

spherical waves radiated from the corners of the rectangular fault. The cylindrical waves

dominate in the regions of a slab normal to the dislocation line containing the fault plane,

and have the same characteristics as the cylindrical waves from the moving dislocation line

given in equations (10.54), (10.69), and (10.70).



Suggestions for Further Reading

FIGURE 10.20
Radiation patterns for the body waves radiating
from the point of nucleation of a propagating
in-plane shear fault. Compare with the usual
double-couple radiation pattems (Figs. 4.5a
and 4.6b).
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Problems

10.1 One of the most powerful methods for discriminating an underground nuclear

explosion from an earthquake is based on the excitation of short-period P-waves

relative to long-period surface waves. If we take an explosion and a shallow

earthquake that generate comparable P-waves with period around 1 s, it is observed

that the Rayleigh waves generated by the explosion are an order of magnitude

smaller (with period around 20 s) than those generated by the eafthquake. Assume

a double-couple point source for the earlhquake and a point source with isotropic

moment tensor for the explosion, both buried in a homogeneous half-space' Find

out ifthe difference in source type and focal depth (the depth of an explosion cannot

be greater than a few kilometers) car cause an order of magnitude difference in

Rayleigh vs. P-wave excitation. If not, what other effects can account for this

observation?

10.2 Some important symmetry properties for the radiation from general shear faulting

on a plane surface within an infinite, homogeneous, isotropic medium can be in-

ferred from (10'39)' For shear faulting in the plane x3 : 0' show that displacement

components parallel to the fault plane are odd funcions of distance x3 from the

faultandthatthedisplacementnormaltothefaultis aneven functionof xr. Hence,

for traction on planes parallel to E at distance x3, show that the normal component

is an odd function ofx3 and that the shear components are even. Finally, show that

the normal component of traction on a planar fault (in an infinite, homogeneous,

isotropic medium) cannot be changed by aoy shearing event on the fault.



Problems

10.3 Equation (10.41) amounts to a dynamic boundary condition for tractions on the
fault plane. Where do we take this condition into account in setting up a representa-
tion ofthe solution, such as (10.39)? Verify that this representation ofthe radiated
field does indeed have continuity of shear stress across the fault (use results of
Problem 10.2).

10.4 The opening of a crack may be represented by a displacement discontinuity [u] that
is parallel to u, the fault normal. Obtain the equivalent body force in an isotropic
elastic body, and find the far-field body waves ( P and s) in an infinite homogeneous
medium (cf. equation (10.6)).

10.5 Show that the source spectrum for a faulting episode, derived from the far-field
displacement as discussed in Section 10.1.4 in the limit of low frequencies, is flat
at the origin (co : 0). (This result is true, whether the spectrum has a maximum at
the origin, or whether there is overshoot.)

10.6 Under the assumptions of shear faulting on aplane, and slip everywhere in the same
direction, we have seen that the far-field pulse shape is given by (10.13) provided
fault length Z, wavelength ),, and source-receiver distance ro satisfy the constraint
f2 << lXro. Far-field pulse shapes for P-waves and S-waves radiate our to every
direction on the focal sphere. suppose that the pulse shape g(r) is radiated as an
S-wave in some direction 7r.

a) Show that it is always possible to find a direction y" in which this same pulse
shape Q (r) is radiated as a P-wave (though the arrival time will be different,
and note that we are neglecting the effects of different attenuation between P-
and S-waves).

b) What is the relationship between yp and yr?

c) Given a P-wave pulse shape observed in direction y", show that it is not always
possible to find a direction in which this same pulse shape is observed as an
S-wave.

10.7 The "finiteness factor" X-t sin X that appears in equations (10.20)-(10.22) is very
simple, because (i) the rupture is unilateral (i.e., it proceeds from one end of the
fault to the other); (ii) it has constant rupture velocity; (iii) the fault width w is
very small; and (iv) the slip function at each point of the fault plane is the same,
apart from a delay due to the time taken for rupture to initiate.

a) Suppose that we drop assumptions (i), (ii), and (iii), but rerain (iv). Show that
the far-field pulse shape is then given by

f2 (x, rr;) : f2o(x, a) F (y, at),

where S26(x, a-l) is the pulse shape radiated by a point shear dislocation of
strength A x Lu(co), and the finiteness factor in this more general case is
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Here A is the fault area, r (() is the time taken for the rupture to reach ( on the

fault plane, and 7 is the ray direction from source to receiver'

b) In the time domain, show that O (x, l) is given by convolving S2o(x, t) with a

pulse shape having unit "area," i.e., show that /a F(y,t) dt : L'

c) Now drop assumption (iv) also, and show that the corresponding finiteness

Iactor ls

F(v,at): =] [ [ trCl Lur(.a)exp ia'r 7-t vl a>''\''*' Mo@)JJt'" I c I

where Ms(@) : I I pt(() LuG, a) dE . Show that this more general finiteness

factor also has unit weainthe time domain.


