CHAPTER

" Representation of Seismic Sources

Seismic waves are set up by winds, ocean waves, meteorite impacts, rocket launchings, and
atmospheric explosions—even by people walking around in the vicinity of seismometers.
These, however, are examples of sources external to the solid Earth, and they can usually
be analyzed within the simple framework of time-varying tractions applied to the Earth’s
surface. Other sources that, for many practical purposes, are also external, include volcanic
eruptions, vented explosions, and spalling (free fall of a surface layer thrown upward by
an underground explosion). For internal sources, such as earthquakes and underground
explosions, the analytical framework is more difficult to develop, because the equations
governing elastic motion (2.17)—(2.18) do not hold throughout the solid Earth. This chapter
is about internal sources, and we shall distinguish two different categories: faulting sources
and volume sources.

A faulting source is an event associated with an internal surface, such as slip across
a fracture plane. A volume source is an event associated with an internal volume, such as
a sudden (explosive) expansion throughout a volumetric source region. We shall find that
a unified treatment of both source types is possible, the common link being the concept of
an internal surface across which discontinuities can occur in displacement (for the faulting
source) or in strain (for the volume source).

The mathematical description of internal seismic sources has classically been pursued
along two different lines: first, in terms of a body force applied to certain elements of the
medium containing the source; and second, by some discontinuity in displacement or strain
(e.g., across a rupturing fault surface or across the surface of a volume source). The second
approach can usefully be incorporated into the first if we can find body-force equivalents
to discontinuities in displacement and strain. We begin our analysis by developing body-
force equivalents in some detail for simple shearing across a fault surface, showing that
radically different systems of forces can be equivalent to exactly the same displacement
discontinuity. We then develop the general theory for faulting sources, following Burridge
and Knopoff (1964), and finally we outline the theory for a volume source.

The motions recorded in a seismogram are a result both of propagation effects and
of source effects. Thus a major reason for seeking a better understanding of the source
mechanism has been to isolate the propagation effects, since these bear information on the
Earth’s internal structure. Since the pioneering work of Sykes (1967), earthquake source
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mechanisms have been studied to chart the motions of tectonic plates. Source theory can
elucidate physical processes such as those taking place in volcanoes. It continues to be
developed with a view to predicting earthquake hazards at engineering sites, on the basis
of geological and geophysical data on the properties of nearby faults and the distribution of
regional stresses.

3.1 Representation Theorems for an Internal Surface; Body-Force
Equivalents for Discontinuities in Traction and Displacement

The representation theorems obtained in Chapter 2 can be a powerful aid in seismic source
theory if the surface § is chosen to include two adjacent surfaces internal to the volume V.
The motivation here comes from the work of H. F. Reid, whose study of the San Andreas
fault before and after the 1906 San Francisco earthquake led to general recognition that
earthquake motion is due to waves radiated from spontaneous slippage on active geological
faults. We shall discuss this source mechanism in more detail in Sections 3.2 and 3.3, and the
dynamical processes involved (and other source mechanisms) in Chapter 11. Our present
concern is simply to show how the process of slip on a buried fault, and the waves radiated
from it, can naturally be analyzed by our representation theorems.

For applications of (2.41)—(2.43), we shall take the surface of V to consist of an external
surface labeled S (see Fig. 3.1) and two adjacent internal surfaces, labeled ¥ and X,
which are opposite faces of the fault. If slip occurs across X, then the displacement field is
discontinuous there and the equation of motion is no longer satisfied throughout the interior
of §. However, it is satisfied throughout the “interior” of the surface § + £ + X7, and to
this we can apply our previous representation results.

The surface S is no longer of direct interest (it may be the surface of the Earth), and we
shall assume that both u and G satisfy the same homogeneous boundary conditions on

FIGURE 3.1

A finite elastic body, with volume V and external surface S, and an internal surface £ (modeling
a buried fault) across which discontinuities may arise. That is, displacements on the X~ side of X
may differ from displacements on the 7 side of £. The normal to ¥ is v (pointing from £~ to
%), and the displacement discontinuity is denoted by [u(&, )] for & on ¥, with square brackets
referring to the difference u(€, 7)|y+ — u(é, v)|y-. In general, a similar difference may be formed
for the tractions (due to external applied forces on X), but for spontaneous rupture the tractions must
be continuous, and then [T(u, v)| = 0.
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S—though not on ¥ (see below). Then from (2.41), using (2.39) and renaming some
variables and indices,

un(x,t):/ drt f/ Vfp(n,r)an(x,t—r;n,O)dV(n)

4 e ij 'aGu ,t—1;¢,0)/0
+L,o Tffg[[”f(f T)c1jpgV 0G5, 1 = T3 €, 0)/3¢,
= [G,,p(x,t — 56,007, (mE, 7), v)]} dz. 3.1)

This formula uses n as the general position within V, and £ as the general position on .
Square brackets are used for the difference between values on £ and £~ (see caption for
Fig. 3.1).

As yet, nothing has been assumed for the boundary conditions on X. Although the
choice for u must conform to actual properties of displacement and traction across a
rupturing fault surface, the choice for G can be made in any fashion that turns out to be
useful. Thus, for u, the slip on a fault leads to a nonzero value for [u], but the continuity
of traction (see the proof of (2.7), and Problem 2.8) implies [T(u, v)] = 0. The simplest
and most commonly used way to establish a defining property of G on X is to take X as an
artificial surface across which G and its derivatives are continuous, so that G satisfies the
equation of motion (2.36) even on X. This is by far the easiest Green function to compute
for the volume V', and (in the absence of body forces for n) it gives the representation

(o8]
u, (X, 1) = f dr ff [1;(&,7)] ciquujian(x, t—id,00dE., (32
—c0 x d fq

It is not surprising that displacement on the fault is enough to determine displacement
everywhere: this feature of (3.2) might have been expected from the uniqueness theorem.
Nevertheless, it is at first sight surprising that no boundary conditions on X are needed for
the Green function that describes waves propagating from the source. One might expect that
motions occurring on the fault would set up waves that are themselves diffracted in some
fashion by the fault surface. But although this interaction complicates the determination of
the slip function [u(&, t)], it does not enter into the determination of the Green function used
in (3.2), and many seismologists have used this formula to compute the motions set up by
some assumed model of the slip function. We shall describe examples of such integrations
in Chapter 10.

3.1.1 BODY-FORCE EQUIVALENTS

The earthquake model we have just described does not directly involve any body forces,
though the representation (3.2) does give displacement at (X, #) as an integral over con-
tributing Green functions, each of which is the same as if it had been set up by a body force.
Thus there must be some sense in which an active fault surface can be regarded as a surface
distribution of body forces.
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To determine this body-force equivalent, we start with (3.1) and assume still that ¥ is

transparent to G. Making no assumptions about [u] and [T(u, n)] across 2 (so that sources
of traction are also allowed), we find

un(x,t):f dt ff Vj},(n,t)an(x,t—r;n,O) dVin)

o o]
+ f dz ff {[1:@. D] €ijpg¥iGupg .1 = 7:8.0)
—00 by
- [r,@E 0.0] 6,1 -0} dx@.  (33)
The discontinuities on ¥ can be localized within V by using the delta function §(n — &).
For example, [T] d (&) has the dimensions of force, and its body-force distribution (i.e.,

force/unit volume) is [T] 8(n — £)dX as n varies throughout V. The traction discontinuity
in (3.3) therefore contributes the displacement

d - T LI | 8(np—E)dE} G, (x,t —1;n,0)dV.
[ [, |-, I olsn-ra5} v

Since this expression has precisely the form of a body-force contribution (see the first term
in the right-hand side of (3.3)), the body-force equivalent of a traction discontinuity on £
is given by f [T], where

IR f fz[T(u(ej, 21801 — &) dZ (). (3.4)

The displacement discontinuity is harder to interpret, displacement being less simply
related to force than is traction. We use the delta-function derivative 38(n — ¢)/dn, to
localize points of ¥ within V. This function has the property

9 d
AT A aiGH el _5 T L= s ] ’
3 G, t = T:£,0) fffv o (= &G,,(x, 1 — 17,0 dV(n)

so that the displacement discontinuity in (3.3) contributes the displacement

& a
j;mdr fffv {_ffz [ui(f,r)] ciquvjaé(nff) d‘Z} an(x,t —1;n,0)dV

at position x and time 7. The body-force equivalent f (u] of a displacement discontinuity on
> can now be recognized from this expression as

a
7)== [[ 0@ D] g5 -0~ O dB. (35)
z an,
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BOX 3.1
On the use of effective slip and effective elastic moduli in the source region

We are using the words “fault plane” and “fault surface,” symbolized by Z, as mathematical
entities that have no thickness. Yet there are many places in the world where Earth scientists
have direct access to fault regions, and one often finds there a zone of crushed and deformed
rock, perhaps several meters thick, so that geologists often speak of “fault gouge” and a
“fault zone.” What, then, is meant by our claim that body-force equivalents depend only on
elastic moduli at the fault surface?

The fault zone itself may be as wide as 200 meters, which for most but not all pur-
poses is far less than the wavelengths of detectable seismic radiation, in which case it is the
displacement change across the whole fault zone that is the apparent displacement discon-
tinuity, initiating waves which propagate out of the source region. Therefore, in almost all
practical cases, the elastic moduli for equations (3.2), (3.3), and (3.5) are the constants ap-
propriate for the competent (unaltered) rock adjoining the fault zone. Exceptions may arise
with fault zone effects that may be significant for seismic wave excitation at frequencies of
interest to strong motion seismology (Aki, 1996).

Although the integrand here involves 27 terms (summation over i, j, g), which are
different for each p, we shall find important examples in which only two or three terms
are nonzero. The body-force equivalents (3.4) and (3.5) hold for a general inhomogeneous
anisotropic medium, and they are remarkable in their dependence on properties of the elastic
medium only at the fault surface itself.

Since faulting within the volume V is an internal process, the total momentum and total
angular momentum must be conserved. It follows that the total force due to f ], and the
total moment of f ™! about any fixed point, must be zero. Thus

fff f8m, ) dV() =0  forallz, (3.6)
1%
and
ff (n—ng) xf™@m,©)dV(p) =0  forall r and any fixedny,. (3.7
%

To verify (3.6), note that the p-component of the left-hand side is
— [z [4] ijpgv; [ﬂfv 38(n —f)/anqu] d¥(¢). The volume integral here is
/i fs 8(n—&n i dS(n), which vanishes because n on S can never equal & (S and X having
no common point).
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To verify (3.7), write the m-component of the left-hand side as

fffv Sr:vmp(nn = n(]n)fp[u]dv
Tiain -/i/;: Ciipg _,r !f./.f rrmp(”n 770" 3(7] ) dV} d% (from (3.5))

3 d
=i ff qupciquvj [ui] d¥ (usmg P (nn = nUn.) = an)
B Ny

=10) (using the symmetry c;;,, = ¢;jq,)-

As a simple example of a body force that is equivalent to a field discontinuity, consider
the case of a body force applied at just one point, and in a particular direction (e.g., the body
force for a Green function, given by (2.4)). This can instead be regarded as a discontinuity in
a component of stress. To obtain the equivalence, take x5 as the depth direction and consider
a vertical point force, with magnitude F', applied at (0, 0, &) and time = 0 and held steady.
Then

f(n, v) = (0,0, F)8(n)8(ny)d(n3 — h)H (7). (3.8)

This source can instead be regarded as a discontinuity in traction across one point of the
plane &; = h, with

= e e
[T(£! r)]€=(‘:l’éz_h—) = (0., 09 F)a(él)a(éz)ﬂ(f), (39)
i.e., T;3, Tp3 are continuous, and the jump is in 735. The equivalence of (3.8) and (3.9) can
be shown by a straightforward application of (3.4).
The most important example of a body-force equivalent in seismology is found in shear
faulting, and we next take up this subject in some detail.

3.2 A Simple Example of Slip on a Buried Fault

The seismic waves set up by fault slip are the same as those set up by a distribution on
the fault of certain forces with canceling moment. The distribution (for given fault slip) is
not unique, but in an isotropic medium it can always be chosen as a surface distribution of
double couples. This conclusion was unexpected, in view of arguments used in a long-lasting
debate on the question of whether earthquakes should be modeled by a single couple or by a
double couple. Those who advocated the single-couple theory did believe that earthquakes
were due to slip on a fault, but they intuitively thought for many years that such slip was
equivalent to a single couple (composed of two forces corresponding to the motions on
opposite sides of the fault). An intuitive approach is often dangerous in elastodynamics.
On the other hand, some of those who advocated the double-couple theory thought that an
earthquake must be voluminal collapse under pre-existing shear stress. The fault theory of
earthquake sources (now recognized as the equivalent of a double couple) has gained strong
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FIGURE 3.2

A fault surface £ within an isotropic medium is shown lying in the &, = 0 plane. Slip is presumed to
take place in the &;-direction across X, as shown by the heavy arrows. Motion on the side =T (i.e.,
&= 0*) is along the direction of ¢, increasing, and on the side X~ is along &; decreasing.

support from increasing amounts of data obtained very close to the source region, as well
as support from the radiation patterns observed at great distances.

As shown in Figure 3.2, we shall take the fault ¥ to lie in the plane &; = 0, so that
v, =1, = 0. For the case that we are calling “fault slip”, [u] is parallel to ¥ and so [u] has
no component in the &;-direction. Let &, be the direction of slip, so that [u,] = [u3] = 0.
Then the body-force equivalent, from (3.5), reduces to

d
£, 7) = — f f: 148 0)] i35, =300 = &) 1 45

In isotropic (though still possibly inhomogeneous) media, we can find from (2.33) that all
C13pq Vanish, except ¢13;3 = €133 = K- Hence

d
Flnsapae f fz &) [14(8. ] 801, — 0801, — )53 ()
3
faln, ©) =0, (3.10)

)
= f f b2 [i0a] 26, = £ 1n — E)B0s) e 4.
b> any

First, let us look at f;, which we shall find represents a system of single couples (forces
in +7,-direction, arm along n5-direction, moment along 1,-direction) distributed over X.
The integral above yields

A0, ) = —u@) [ )] %S(ngo. @3.11)
3

As shown in Figure 3.3, this component may be thought of as point forces distributed over
the plane n; = 0™ and opposed forces distributed over the plane 573 =07.
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(a) (b)

FIGURE 3.3

Interpretive diagrams for the first component, f;, of the body-force equivalent to fault slip of the
type shown in Figure 3.2. (a) The spike (—8(n5),0,0) is plotted against n;. (That is, a spike in
the —,-direction, acting at n; = 0.) (b) The derivative ((—8/3173)6(713), 0, 0) is plotted against 75.
The body force ( f;,0, 0) is proportional to this quantity (see equation (3.11)). (¢) Heavy arrows show
the distribution of f; over the %7 side of ¥ and over the ¥~ side (broken arrows). This is the body-
force component that would intuitively be expected in any body-force model of the motions shown
in Figure 3.2.

The total force due to f; vanishes (see discussion of (3.6)), but the moment of this force
component alone does not. The total moment about the 7,-axis is

fffv n3fidV =— fffv nat [u1] 811735(’73) dny dn, dn3=ffZ w[u €. )] dx.

If slip is averaged over X to define the quantity

J [m@ 0]

u(r) = 7 .

where A = [f;. dX is the fault area, and if the fault region is homogeneous (so that y is
constant), then the total moment about the n,-axis due to f;(&, 7) is simply puA along the
direction of 7, increasing.
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i FIGURE 3.4

Interpretive diagrams for the third com-

ponent, f5, of the body-force equivalent

to fault slip [u,] . (@) An assumed vari-

ation of slip [ul] with #;, at fixed n,

and 7. (b) The corresponding deriva-

tive 8 [u,] /dn;. (¢) The distribution of
1 single forces f; with varying 7, (see
equation (3.12)). This distribution will
clearly yield a net couple, with moment
in the —7,-direction.

A
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The body-force equivalent, given in (3.10), also involves f3, and we shall find that this
represents a system of single forces. Taking the 7,-derivative outside the integration, we
find

a
Ho) = T {i [y(n, )]} 8(n3). (3.12)
1

Although this component is not itself a couple at each point on X, in the sense that we have
shown f; to be a couple, the whole distribution of f; across X does have a net moment.
Figure 3.4 shows how f; can reverse direction at different points of X. The total moment
about the 7,-axis is

fffv ez AV =fffv ’?13% {i [11]} 8(n3) dny dny dis

2 f f 1 R _[ f el
= 361 B

(This last equality follows from an integration by parts, using a fault surface ¥ defined to
have [u] = 0 around its perimeter.) In a homogeneous source region, it follows that the total
moment due to f3is —pu A, which is equal in magnitude to the total moment of f;, but acts
in the opposite direction. We obtained this result in more general form in (3.7), but have
found here the two canceling contributions that arise.
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‘We have now shown that fault slip is equivalent to a distribution of single couples ( ),
plus a distribution of single forces ( f3) that have the net effect of an opposing couple. Yet
the classical force equivalent for fault slip is a double-couple distribution over X, as was
first shown for a finite fault by Maruyama in 1963. The fact is that force equivalents to a
given fault slip are not unique. A direct way to see this, and to obtain the double-couple
density as well as the single-couple/single-force density, is to write out representation (3.2)
for the fault slip described in Figure 3.2. The result is

u, (X, 1) = [ drff "‘+8G dx. (3.13)
n 863 é] >

The first term here in curly brackets, 8G (X, ¢ — 7; &, 0) /05, is the limit of

Gt rnirnt 1 0) — G0 bty & — 884, 0)
2e

as ¢ — 0. (We take E:‘ as a unit vector in the &-direction.) This is the single-couple
distribution shown in Figure 3.5a. The second term in (3.13) involves the limit of

G 3(x,t — ;& +88,,0) — G a(x,t — 73 & — £1,0)
28 i

and this single-couple distribution is shown in Figure 3.5b. These two systems form a
double-couple distribution, and we must ask why the earlier set of body-force equivalents
we derived, (3.10), made up a single couple plus a single force. The answer can be seen if
one term in (3.13) is integrated by parts, giving

2 du
)= d 2 i i o 3.14
a5 D) f_oc Tffz“( ak 9, [aél} ”3) i

This force system is illustrated in Figure 3.6; clearly it is the same as the system we found
first of all, shown in Figures 3.3 and 3.4. There is always a single couple ( f;, Figs. 3.3,
3.5a, and 3.6a) made up of forces in the same direction as fault-surface displacements
(Fig. 3.2). But a complete equivalent to fault slip has another part, which may be regarded
as a distribution of single forces ( f3, Figs. 3.4 and 3.6b), a distribution of single couples
(Fig. 3.5b), or an appropriate linear combination of these alternative extremes. For a given
element of area d ¥ on the fault, these force systems are physically quite different: from the
integrand in representation (3.13), there appears to be no force or moment acting on d%;
but from (3.14), there does appear to be both force and moment acting on 4 2, although we
showed earlier that f| and f; integrate to give zero net force and zero net moment on the
whole of X.

We have brought out these results in some detail, because they show the limited utility of
force equivalents for studying the actual forces occurring in dynamic processes of fault slip.
Whereas the body-force equivalent to fault slip is unique (see Box 3.3), force equivalents in
the sense of this section are not unique (force equivalents in this case being force/unit area
on a finite fault). It is the whole fault surface that is radiating seismic waves, and we cannot
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FIGURE 3.5

The radiation from these two
distributions is the same as
the radiation from slip on a
fault. In this sense, these two
single-couple distributions,
taken together, are equivalent
to fault slip. Note that there
is no net couple, and no net
force, acting on any element of
area in the fault plane (£, = 0).

assess from (3.13) or (3.14) the actual contribution made to the radiation by individual

elements of fault area. This makes sense in physical terms, because individual elements
of fault area do not move dynamically in isolation from neighboring parts of the source
region. Force equivalents (usually chosen as the double-couple distribution) find their main
use only when the slip function [u(¢, 7)]has been determined (or guessed), and then they are
important because they enable one to compute the radiation by weighting Green functions.

At great distance from a rupturing fault, it often occurs that the only waves observed
are those with wavelengths much greater than linear dimensions of X, the causative fault.

¢s 4

(b)

TT o S

FIGURE 3.6

Another force system that is
equivalent to fault slip (compare
with Fig. 3.5). (a) and (b) here
constitute a single-couple plus
single-force system, which has
zero total couple and zero total
force for the whole fault surface.
But individual elements of area
are acted on by a couple and a
force.
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(Higher frequency components are relatively weak even at the source—see Chapter 11—
and are more effectively attenuated during propagation.) In such cases X acts as a point
source, and if we also assume that the only waves observed have periods much longer than
the source duration then the slip is localized by replacing [u(ﬁl, i r)] by the concentrated
distribution WAS(,)8(&,) H (7). Then f;, as well as f;, becomes a single couple, and the
double-couple point source equivalent to fault slip is

ad
filn, o) = “Mofs(m)c?(nz)gn*rS(ﬂg)H(T)
3

Hn,t)=0 (3.15)

0
fn, 1) = —Mogn—ﬁ(m)ts(ng)fs(ng)ff(f),
1

where
My = pnitA = ju x average slip x fault area. (3.16)

We call M, the seismic moment. 1t is perhaps the most fundamental parameter we
can use to measure the strength of an earthquake caused by fault slip. Measured values of
M, range from about 10 dyn-cm (1960 Chilean earthquake, 1964 Alaskan earthquake)
down to around 10'2 dyn-cm for microearthquakes, and 10° dyn-cm for microfractures in
laboratory experiments on loaded rock samples. Even for geophysics, twenty-five orders
of magnitude is an exceptionally large range to be spanned by a single physical variable.
The first person to obtain the double-couple equivalence for an effective point source of slip
was Vvedenskaya (1956). The first estimate of seismic moment was made by Aki ( 1966)
for the Niigata earthquake of 1964, using long-period Love waves observed by the World-
Wide Standard Seismograph Network. Moment estimates are now made routinely within
hours, or even minutes, after the occurrence of significant earthquakes. The limiting factors
are the time taken for seismic waves to travel through the Earth’s interior to the stations
whose data are used; and the time taken for the recorded waveform data to be passed to the
processing site where the estimate is made.

Kanamori (1977) introduced the concept of moment magnitude to seismology. This is
simply a magnitude scale based on the seismic moment of an earthquake, which must first
be estimated. His definition of the moment magnitude, denoted as M, , is

log My = 1.5M,, + 16.1 (3.17)

in which the constants were chosen so that M, is approximately the same as the surface
wave magnitude (see Appendix 2) for a certain class of earthquakes. Magnitude scales in
seismology have traditionally been defined empirically, usually as some type of distance-
corrected measure of the strength of ground shaking. However, the moment magnitude,
being derived from a physical characteristic of the source (namely, M), is fundamentally
different from these empirical magnitudes.



3.3 General Analysis of Displacement Discontinuities across an Internal Surface T

We have defined M|, as a constant, but for some purposes it is useful to evaluate the
seismic moment as a function of time, given by pu(t) A, in which u is averaged at time 7. In
these cases, M H () in (3.15) is replaced by M;,(z), and (in the terminology of Chapter 10)
we speak of the “rise time” being different from zero.

Note that there is a fundamental ambiguity in identifying the fault plane associated with
the point-source double couple (3.15). We have worked in this section with a fault surface
normal to the x;-direction and slip parallel to the x,-direction. If the fault surface instead
is taken normal to the x,-direction and slip is taken parallel to the x;-direction in a faulting
episode with the same moment, then the equivalent body force is again (3.15). It follows
that there can be no information in the seismic radiation or static displacement field from
an effective point-source of slip that will enable one to distinguish between the fault plane
and its auxiliary plane (i.e., the plane perpendicular to both the fault and the slip).

3.3 General Analysis of Displacement Discontinuities across
an Internal Surface X

In this section we introduce the seismic moment tensor, M. This is a quantity that depends on
source strength and fault orientation, and it characterizes all the information about the source
that can be learned from observing waves whose wavelengths are much longer than the linear
dimensions of . In this case, the source is effectively a point source with an associated
radiation pattern, and the moment tensor can often be estimated in practice for a given
earthquake by using long-period teleseismic data. In practice, seismologists usually use
moment tensors that are confined to sources having a body-force equivalent given by pairs
of forces alone (couples, vector dipoles). Such sources include geologic faults (shearing)
and explosions (expansion), with M as a second-order tensor. For forces differentiated more
than once, sources can be characterized by higher order moment tensors (see Julian et al.,
1998).

For sources of finite extent, we shall introduce the seismic moment density tensor, m,
which can often be thought of as dM/d Z, or as dM/dV for a volume source.

There are two ways in which this section generalizes Section 3.2. First, the coordinate
axes are not taken in directions related to directionalities of the source. (This generality
is important, because the direction of slip and the orientation of the fault plane are not
usually known a priori, but must be deduced from the radiated seismic waves.) Second,
discontinuities are to be allowed in the displacement component normal to the fault plane,
so that expansions or contractions can be simulated.

Our starting point for the general analysis of displacement discontinuities is the repre-
sentation (3.2), but using now the convolution symbol  so that

3
Rt = ffz (] vjcijpg * 5(::6’”’ dx. (3.18)

Note that f * g = [ f(r)g(t — 1) dr = [y f(t —)g(x) dr = [T, f(r)g(t — 1) dT if
f(¢) and g(¢) are zero for r < 0. If X, is the amplitude of a force applied in the p-direction
at & with general time variation, then the convolution X, * G, gives the n-component
of displacement at (x, #) due to the varying point force at £. More generally, if the force

49




50

Chapter 3 / REPRESENTATION OF SEISMIC SOURCES

(11 (1,2) (1.3)

2,1 (2,2) (2,3

(3,1) (3,2) (3.3

R
S

FIGURE 3.7
The nine possible couples that are required to obtain equivalent forces for a generally oriented
displacement discontinuity in anisotropic media.

applied at £ is F(&, 7), then we can sum over p and write F), * G, for the n-component
of displacement at (x, ¢). For displacement discontinuities as in (3.18), there are instead
derivatives of G, with respect to the source coordinates ¢,. Such a derivative, we saw in
Section 3.2, can be thought of physically as the equivalent of having a single couple (with
arm in the ¢ -direction) on X at ¢. The sum over g in (3.18) is then telling us that each
displacement component at x is equivalent to the effect of a sum of couples distributed
over X.

For three components of force and three possible arm directions, there are nine general-
ized couples, as shown in Figure 3.7. Thus the equivalent surface force corresponding to an
infinitesimal surface element d X (¢) can be represented as a combination of nine couples.
In general, we need “couples” with force and arm in the same direction (cases (1, 1), (2, 2),
(3, 3) of Fig. 3.7), and these are sometimes called vector dipoles.

Since [1;] v;c;jp, * 0G,,,/0¢, in (3.18) is the n-component of the field at x due to
couples at &, it follows that [u;] v;¢;;,, is the strength of the (p, g) couple. The dimensions
of [u;] v Cijpg T€ moment per unit area, and this makes sense because the contribution
from & has to be a surface density, weighted by the infinitesimal area element d X to give a
moment contribution. We define
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Mg =[] VCijpg (3.19)

to be the components of the moment density tensor, m. In terms of this symmetric tensor,
which is time dependent, the representation theorem for displacement at x due to general
displacement discontinuity [u(¢, )] across X is

U, (X, 1) = /fz 50 % G 43, (3.20)

When we have learned more about the Green function (in Chapter 4), we shall find that the
time dependence of the integrand in (3.20) is quite simple, because if X is many wavelengths
away from &, then convolution with G gives a field at (x, ¢) that depends on what occurs at
¢ only at “retarded time,” i.e., # minus some propagation time between & and x.

For an isotropic body, it follows from (2.33) and (3.19) that

g = Mg [ (8, )] 8,0 + 1 (up [uq(g, r)] +v, [up(f, r)]) Jm il gy

Further, if the displacement discontinuity (or slip) is parallel to ¥ at &, the scalar product
v - [u] is zero and

myq = K (UP [uq] =V, [up]) . (3.22)

In the case of X lying in the plane &; = 0, with slip only in the £;-direction, we have
the source model considered in Section 3.2, and for this the moment density tensor is

0 0 w0
m= 0 0 0 i
wlm@.n] o 0

which is the now familiar double couple.
In the case of a tension crack in the & = 0 plane, only the slip component [u5] is
nonzero, and from (3.21) we find

A [us(€, )] 0 0
m= 0 A [us(€, D] 0
0 0 (A +2u) [us(&,7)]

Thus a tension crack is equivalent to a superposition of three vector dipoles with magnitudes
inthe ratio 1 : 1 : (A 4+ 2u)/A (see Fig. 3.8).

The above results have been developed for a fault plane ¥ of finite extent, but in practice
the seismologist often has data that are good only at periods for which the whole of I is
effectively a point source. For these waves, the contributions from different surface elements
d¥ are all approximately in phase, and the whole surface ¥ can be considered as a system
of couples located at a point, say the center of X, with moment tensor equal to the integral
of moment density over X. Thus, for an effective point source,

w,X,t)=M, %G (3.23)

rq np.gq
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FIGURE 3.8
The body-force equivalent for a tension crack in an isotropic medium.

where the moment tensor components are

. M,
M,, =[fz My d)::/f): (] vicijpy dE, e, Mpg=—==-  (324)

In (3.23) we have one of the most important equations of this chapter. Later in this book,
we shall evaluate the Green function and the different waves it contains. Thus in Chapter 4
we shall use ray theory for G and interpret (3.23) in terms of body waves excited by given
M (equation (4.96)). In Chapter 7, we shall find the surface waves excited by M (equations
(7.148)—(7.151)), and in Chapter 8 the normal modes of the whole Earth (8.38).

In terms of seismic moment M,,, and with the choice of coordinate axes made in
Section 3.2, the moment tensor for an effective point source of slip is

0 0 M,
M=|o0 0o o0 |]. (3.25)
M, 0 0

Equations (3.24) justify the name “moment tensor density” for m. In the case of a
finite source, we can now interpret the representation (3.20) as an areal distribution of point
sources, each point having the moment tensor m d Z.

* We conclude this section with an interesting use of “seismic moment,” suggested
by Brune (1968), involving the kinematic motions of tectonic plates. Such motions lead
frequently to a type of regional seismicity in which many different earthquakes share the
same fault plane (although any one event will involve slip over only a part of the whole
fault area). If MB is the seismic moment of the ith earthquake in a series of N earthquakes
in time interval AT, it follows from the definition of M(') that the total slip due to the whole
series is

A = =L 3 (3.26)
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BOX 3.2
On uses of the word “moment” in seismic source theory

In rotational mechanics, it is often enough to speak of a couple possessing the qualities
of magnitude and a single direction. The magnitude of a couple is then a scalar quantity
called the moment. In our study of displacement discontinuities, however, and body-force
equivalents, we imply more directional qualities behind the word “couple” than is the case
in rigid-body rotational mechanics. For us, “couple” involves the directions of both force
and lever arm. A result of this is that the quantity “moment” jumps up from scalar to tensor.

Second-order Cartesian tensors in mathematical physics are usually quantities that relate
one physical vector to another. One example is given by equation (2.16), in which the stress
tensor is a device for obtaining traction from the vector orientation of an area element.
Another example is the inertia tensor I, which gives angular momentum h from angular
velocity @ via ii; = I;;w . In seismic source theory, however, the moment tensor is an input
rather than a filter, and it is operated on by a third-order tensor to yield vector displacement
(see (3.20) and (3.23)).

where S is the total area broken in the series. AU is averaged over all of S, and all the terms in
the right-hand side of (3.26) can be estimated. If all the plate motion occurs seismically, and
if the seismicity during AT is representative of the activity on that plate margin for longer
time scales, then AU /AT is an estimate of the relative velocity of the plates, regarded as
slow-moving rigid bodies, and it can be obtained from seismic data alone.

3.4 Volume Sources: Outline of the Theory and Some Simple Examples

In order to develop equations for seismic waves from buried explosions or from rapid
phase transformations, it is necessary to introduce the concept of a volume source. We
shall describe such a source in terms of a transformational (or stress-free) strain introduced
in the source volume, and shall develop properties of an associated seismic moment tensor.

Let us illustrate this concept by a set of imaginary cutting, straining, and welding
operations described by Eshelby (1957). First, we separate the source material by cutting
along a closed surface X that surrounds the source, and we remove the source volume (the
“inclusion”) from its surroundings (the “matrix’"). We suppose that the material removed
is held in its original shape by tractions having the same value over T as the tractions
imposed across ¥ by the matrix before the cutting operation. Second, we let the source
material undergo transformational strain Ae, . By this, we mean that Ae,; occurs without
changing the stress within the inclusion, hence the name “stress-free strain.” It is this
strain that characterizes the seismic source. Processes that can be described by stress-free
strain include phase transformation, thermal expansion, and some plastic deformations.
Stress-free strain is a static concept. Third, we apply extra surface tractions that will
restore the source volume to its original shape: this will result in an additional stress field
~Cpgrs A€, = —AT,, throughout the inclusion, and the additional tractions applied on its
surface T are —c .. Ae, v, where v, is the outward normal on . Since Az, is a static
field, Az, , = 0. The stress in the matrix is still unchanged, being held at its original value
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BOX 3.3
Body-force equivalents and the seismic moment tensor

For a general displacement discontinuity across Z, it follows from (3.5) that
a
i [[u,.]ujciqua(z)} :
q

where, by §(X), we mean a one-dimensional spatial Dirac delta function that is zero off X.
Thus, if T lies in the plane 15 =0, §(2) = 8(»3) for points (7;, 7,) on X.

It must be emphasized that f is a force per unit volume, and it is unique. (Once [u,-] is
given on X, then u is determined everywhere, and f = L(u), where L is given in Box 2.4.)
The ambiguities mentioned in Section 3.2 arise only when equivalent surface forces are
sought. Thus the above formula for f,, does not give a distribution of couples and dipoles.
Such a distribution arises only after the displacement representation [[f;; G,,,{f,} dV has
been integrated by parts and the 7, integration completed to give (3.18), which may then
be interpreted in terms of equivalent surface forces. These are nonunique—see (3.13) and
(3.14)—but a surface distribution of couples and vector dipoles is always possible.

We have introduced the seismic moment tensor in the form M, = [f5 [u;] v;¢;;,, 4%,
but from the above formula for body force it is easy to show that

M= [[[ £, aven.

This result can be used to extend the definition of M, since it can be used for any body-force
distribution, and not just for the body-force equivalent to a displacement discontinuity. With
this definition, the moment (in the ordinary sense of rotational mechanics) of body-forces
f about the ith axis is [[f;, &, f, dV = &;;,M,;, which is zero whenever the moment
tensor is symmetric (e.g., in (3.24)).

by tractions imposed across the internal surface ¥, and having the same value as tractions
imposed on the matrix by the inclusion before it was cut out. Fourth, we put the inclusion
back in its hole (which is exactly the correct shape) and weld the material across the cut.
The traction on £~ is now an amount —c ... Ae, v, greater than that on Tt, leading
to a traction discontinuity (in the v-direction) of amount +c,,,; Ae,v,. This traction is
due to applied surface forces that are external to the source and which act on the inclusion
to maintain its correct shape. Fifth, we release the applied surface forces over ™. Since
traction is actually continuous across X, this amounts to imposing an apparent traction
discontinuity of —(c,,,,; Ae,;)v,. The elastic field produced in the matrix by the whole
process is that due to the apparent traction discontinuity across .

The above procedure can be extended to a dynamic case of seismic wave generation,
since, at any given time, a transformational strain Ae,; can be defined for the unrestrained
material. For each instant, it is still true that Az, =0 because stress-free strain (and
the stress derived from it) is a static concept. The seismic displacement generated by the
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BOX 3.4
The strain energy released by earthquake faulting

Within a medium that initially has a static stress field &, we suppose that a displacement
discontinuity develops across an internal surface . This leads to a displacement field
u(x, 1), measured with reference to the initial configuration, and from u we can determine
the additional time-dependent strain and the additional stress 7. Then the total stress is
o = ¢ + 7, and after all motions have died down the new static stress ficld is ol If AE
is defined as the change in strain energy throughout the medium, from its initial static
configuration to its final static configuration, it can be shown that

AE:—%L[MI.] (o} +o)v; A=, (0

where [u] is the final offset. (See Fig. 3.1 for definitions of [ ] and v.) Equation (1) is
known as the Volterra relation (Steketee, 1958; Savage, 1969a).

This result (which we derive below) can be simply restated in terms of work apparently
done by tractions on the fault surface. We can say from (1) that the drop in strain energy
throughout the medium, —AE, is the positive quantity obtained by imagining a quasi-static
growth of traction that is linear with offset:

T=T0+(T1—TO)% for 0=<U < [u] 2)

(for each component of traction T and displacement U). Integrating from 0 to [u] to get the
total work done on ¥ then gives (1).

Several points now need to be made about this relation between AE and the average
stress.

The liberated energy, —A E, supplies the work actually done on the two faces >+ and
¥~ as they grind past each other, plus the work done in initiating the process of fracture.
We discuss these two types of work in Chapter 11. Moreover, —AE supplies the seismic
energy E, that is radiated away from the source region. It is natural to introduce the seismic
efficiency, n, as the ratio E /(—AE). Then

E,=—-nAE= %’7[ [1;] (3} + o), d. )
b))

If the average of the two static tractions does not vary strongly over X, then for the type of
tangential slip shown in Figure 3.2 we see that (3) can be expressed in terms of the moment
My=p [5 [u,] 4. This gives

E, =nMyo /1, 4

where o = %(0’93 1= 0113).

From estimates that can be made of E_, M,,, and p, it thus becomes possible from (4) to
estimate the product 1@, called the apparent stress by Wyss and Brune (1968, 1971). The
reason for this name is that 5 would be the stress that appears to be acting on the fault,
if we make the assumption that the observed radiated energy is equal to the liberated strain
energy. (The assumption here is not a good one. The seismic efficiency is at most a few
percent, so that only a small fraction of the liberated energy is radiated as seismic waves.)

(continued)
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BOX 3.4 (continued)

Since the slip function [u(¢, 7)] in (3.18) determines all displacements (and hence strain
and stress increments) throughout the medium, it also determines the stress drop, a®—ol
But there is no way one can work purely from observations of the radiated field u(x, 7) and
learn anything about the absolute level of stress in the source region. Putting this another
way, and using (1), one can make the following statement. If the same slip function [u(&, #)]
occurs on 2 in two different faulting events with different initial stresses, then all the seismic
displacements will be the same for the two events: but the strain energies liberated for the
two events may be quite different.

It remains, then, to prove our main result (1). This is a formula of great generality, and a
correct derivation can be given by considering the quasi-static deformation we described in
(2). We shall give an explicit proof for the special case in which the internal strain energy
U is given by a strain—energy function W (see Section 2.2). Further, we assume there is an
accessible reference state of zero stress and zero strain. The initial stresses and strains just
prior to faulting are al.o. and e?l, and u is measured from this state.

From (2.32) applied to the total stresses and strains, we get

o uglli-al) 0 -
W=3(0y; + )05 +u; ) (using symmetry of o; )

e i 1 0

=W" + 3038 j + 3Cij005 65

o0 W T

=W+ 30,1,

7 %o’lgu“ (using (2.30)).

Thus the increase in internal energy in the new static configuration is
o 1 0 ceadl 1 0
AE_f(W *W)dv—-jf(ff,-jJFUfj)“,-jst (5)
1% 1% :

where V is the whole elastic volume containing 2 (see Fig. 3.1). Since crr.{} and U,-{,‘ are static
stress fields, (2.17) implies o 1

ij.i = 0;;; = 0 (we assume there are no body forces). From
(5), we obtain

ij\j

1 0 1
AR = o j‘;{(q.j + aij)uf}’j dv,

to which we can apply Gauss’s divergence theorem, regarding V as the interior of § + £+ +
¥ ~. This does give (1) if S is a rigid surface, or if, like the surface of the Earth, it is free.

discontinuity in traction was given by (3.3). Putting [T,1= —(cpqm. Ae”)vq in (3.3), we
get

u, (x,1) =f drt ff (HYER Aequan(x,t =L 0) dE(E): G327
—0o0 =

If the integrand and its derivatives with respect to £ are continuous, we can apply the Gauss
theorem to obtain

un(x,:):f:; dt /f/v ;ﬁq {cm” Ae,._YG"P(x,I—t;é,O)] dv(e) (3.28)
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(V here refers only to the volume of the inclusion, i.e., the source volume). Using
B(cpors De,s)/3E, = AT, , =0, we can rewrite (3.28) and obtain

3G
u, (X, 1) =fff Coe ok R (3.29)
14 a¢,

Comparing this volume integral with the surface integral in (3.18), one sees that it is natural
to introduce a moment-density tensor

pqrs

dMy,
W = Cpqrs Ae” (330)
with the dimensions of moment per unit volume (compare also with (3.24)). Then
dM G
un(x,t)=jff — Py P4y, (3.31)
v dV a&

q

Note that At,, =dM,, /dV is not the stress drop (the difference between the initial
equilibrium stress and the final equilibrium stress in the source region), as is clear from its
definition. The stress drop is not limited to the source volume, but Az, vanishes outside
the source volume. A7, is called the “stress glut” by Backus and Mulcahy (1976).

For long waves, for which the whole of V is effectively a point source, the whole
volume V can be considered a system of couples located at a point, say the center of V,
with moment tensor equal to the integral of moment density over V. Thus, for an effective
point source, (3.23) applies, with the moment tensor components

W= f f fv Engrnse dY. (3:32)

For example, if a shear collapse occurs in a homogeneous isotropic body of volume
V with the nonzero transformational strain components Aej3 = Aeyy, say, the moment
tensor is

0 U GAers
M=2uV (et o] : (3.33)
Aeiz 0 0

The seismic radiation is identical to the point source equivalent to a fault slip, except that
the seismic moment M, is given by 24 Ae 3V For a group of earthquakes in an intraplate
seismic zone, a cumulative strain may be more meaningful than a cumulative slip given
by (3.26). Kostrov (1974) suggested summing moments for a group of earthquakes sharing
the same source mechanism in a given volume to find the total strain in the volume. From
(3.33), the total strain A E; may be estimated as

2

N
AE,, =%

My
1

] 3.34

2V (3.34)

where Mé is the moment of the ith earthquake.
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Finally, let us consider a spherical volume with radius a undergoing a transformational
expansion. The stress-free strain components in this case are Aejy = Aejy = Aey; = 0 and
Aejy= Aeyy = Aegz = % AV/V, where AV/V is the fractional change in volume and
V = 4ma’. For this expansion in an isotropic medium, ¢, Ae, = (A + iw)s,, AV/V
and from (3.32) we have

A+ 2w)AV 0 0
M= 0 (A + WAV 0 . (3.35)
0 0 (A + 2WAV

Thus a spherical source with transformational volume expansion is equivalent to three
mutually perpendicular dipoles, as shown in Figure 3.7. In the above equation, AV is the
stress-free volume change and should not be confused with the volume change 8V of a
confined source region, as discussed in Problem 3.8.
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Problems

3.1 Equations (3.26) and (3.34) are written as scalar equations, because in their deri-
vation it has been assumed that earthquakes in a given region (on S, or within V)
all have moment tensors with the same orientations.

Generalize (3.26) to a vector equation and (3.34) to a tensor equation in cases
where earthquakes in the series (on § or in V) have moment tensors of arbitrary
orientation. (For (3.26), however, continue to assume that the displacement dis-
continuity for each event is a shear and that S is planar.)

3.2 In our derivation of (3.2), we have assumed that the elastic moduli are continuous
across X and that G,,, and 3G, /3¢, are continuous. If the elastic moduli are
not continuous across ¥, interpret part of the integrand in (3.2) as a traction,
and show that this representation is still valid, although 9G, /8¢, may not be
continuous across the surface. (Note: For purposes of defining G, assume =1 and
¥~ have been glued together. These surfaces—which can still move—then do not
have relative motion.)

3.3 In the discussion following equations (3.15) and (3.16), we introduced the time-
dependent seismic moment given by M(t) = pu(r)A.Is (t) here averaged over
the area A(z) that has ruptured at time 7, or is it averaged over A(cc), the area that
ultimately is ruptured during the seismic event under consideration? (Hint: Does
it matter?)

3.4 Show that the moment tensor M described in terms of a double couple in Sec-
tion 3.2 and equation (3.25), i.e.,

0 0 M,
Iy Pt | RSSO g
My 0 0O
can equivalently be described by
My 0 O
M=| 0 0 O
0 0 —M,
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35

3.6

3.4

where components of M are now referred to the principal axes of M as coordinate
axes. (By definition, the principal axes of a symmetric tensor are such that the
off-diagonal components of the tensor, referred to these axes, are all zero.)

In terms of body-force equivalents, this result is illustrated by the following

diagram:
?—‘ & g
E— = & \ /

This shows that a double couple is equivalent to a pair of vector dipoles, equal in
magnitude but opposite in sign.

Show that a seismic point source described by a symmetric second-order moment
tensor M can be thought of as an isotropic point source M plus two double couples.
Is this a unique decomposition of such a point source?

Show that M can also be written in the form

0 0 0 = lnlgudo
M=M+M,—-M)|0 -1 0|+ 0 -} 0],
Ohg Oie 0 1

in which M; (i = 1,2, 3) are the principal moments. The last term here is called a
“compensated linear vector dipole,” having axial symmetry and no volume change.
If M, — M, is the largest difference between principal moments, then M VD
quantifies the extent to which the deviatoric part of the moment tensor differs from
a pure double couple.

Show that the body-force equivalent to a point source at ¢ with moment tensor
M, is given by

bl
fp(X= 't) = _Mpq(t)a_xqa(x = é)'

Consider a spherical cavity with radius @ inside a homogeneous isotropic body.
When a uniform step in pressure, 8p H (1), is applied at the surface of the cavity,
spherically symmetric waves will be generated, which have displacement only in
the radial direction. After the waves have passed, displacement everywhere tends
to its final static value, which characterizes the final outward expansion due to the
applied pressure in the cavity.

a) Use the vector wave equation of Problem 2.1 to show that this static displace-
ment satisfies V(V -u) = 0.



3.8

Problems

b) Hence, in this problem with spherical symmetry, show that the radial displace-
ment is proportional to 1/r? (for a <r, so that this is a so-called external
solution).

¢) Show from equations (2.50) and (2.46) that for this problem the radial stress is
given by

o, 2K
il
ar r

7, = (A +20)

d) The walls of the cavity will oscillate at first, after the constant step in pressure
is applied, but will eventually be displaced outward a constant amount. Let this
final static displacement be §a. Show that

)
8p:4,u—a.
a

Suppose that a spherical volume with radius a, inside a homogeneous isotropic
unbounded medium, undergoes expansion with stress-free volumetric strain given
by AV/V where V = %Jm3. The moment tensor is given by equation (3.35), but
now we shall consider the effects of the rest of the medium, which prevents the
actual strain from attaining its stress-free value.

The confinement of the source region means that instead of radius a expanding
to a + Aa (where AV is given to first order by 47 a*Aa), and being subjected to
zero pressure, the final static radius is given by a + da, subjected to pressure 8p.
We can build upon the results of Problem 3.7 to obtain relationships between the
stress-free changes characterized by Aa and AV (see equation (3.35)) and the
actual final static changes, da and 6V

a) Use the method of Problem 3.7 to show that within the source region the final
static radial displacement is proportional to r. (This is the so-called internal
solution.) If A is the constant of proportionality such that the static radial
displacement is Ar, show that the associated radial stress 7, is a constant and
the final static value of pressure throughout the source region is

8p = —(3h + 2WA.

b) For this problem we can evaluate key steps in the series of cutting and welding
operations first described by Eshelby and covered in Section 3.4. The static dis-
placement of the surface of the source region, due to the effects of confinement,
is from Aa to 8a as pressure changes from the stress-free value (which is zero,
by definition) to the final actual static value, 5p. Show then that

_ A +2u
eV

8p (Aa — da)

and hence, from a relationship given in Problem 3.7, that

A+20
oh— da.

A+ i
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c)

d)

As indicated in equation (3.35), the moment tensor is isotropic. In general
M,, = My(1)s,, is a function of time that depends on details of the process
by which the source region undergoes its change in properties. The final static
value from (3.35) is given by

My(c0) = (A + 2p) AV

where AV is the final value of the stress-free volume change. Show that it is
also given in terms of the actual final (static) volume change §V by

My(00) = (. + 24) 8V.

Show that the actual volume change §V is independent of a, in the sense
that having proved My(co) = (A +2u1)8V as above for some small value of
a, we can choose a larger value of a and evaluate the outward actual static
displacement for this new surface. But 8V is unchanged in value. (Hint: Use
the exterior solution, mentioned in Problem 3.7.)

[We shall find in later chapters that the time-dependent moment is an
important property of the seismic source, which can often be obtained from
seismograms, and that the final value Mj(co) is related simply to the long-
period spectrum of observed signals. Our equations relating moment to AV
and §V enable measurements of My(co) to be interpreted in terms of volume
change at the source, for isotropic sources. We see that the actual volume change
of a source that wants to expand, 8V in the present problem, is approximately
half the size of the stress-free volume change (since (A +2u) /(A + ) ~ 2),
as noted by Miiller (2001). Earlier, Miiller (1973b) showed that for isotropic
sources the scalar moment is (A 4+ 2/4) x area x outward displacement. In the
notation used here, area x outward displacement = 4wa® x 8a = §V. Explo-
sive sources are sometimes quantified by this volume change. We are free to
take the value of @ large enough to confine all nonelastic processes to the inte-
rior region, and as noted above the actual volume increment §V has meaning
independent of any value of a. The actual volume increment 8V represents
the expansion that the nonlinear source region applies to the external linearly
elastic region. Miiller’s 1973 result complements the fact that for shear fault-
ing the double couple is based on a scalar moment given by ¢ X area x slip.
This too can be thought of as the output from the nonlinear region, where rocks
are fracturing and shearing, applied to the external elastic region. The product
given by area x slip is called the potency. Heaton and Heaton (1989) and Ben-
Zion (2001) recommend that the potency be used to quantity earthquake (shear
dislocation) sources, instead of the seismic moment (4« x potency). Like 5V,
potency has the dimensions of volume change. The potency, 6V, and seismic
moment all provide ways to characterize quantitative attributes of the nonlinear
source, which are needed to interpret measurements made in the linearly elastic
region.]



