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CHAPTER

Representation of Seismic Sources

Seisrnic waves are set up by winds, ocean waves, meteorite impacts, rocket launchings, and

atmospheric explosions- - even by people walking around in the vicinity of seismometers.

These, however, are examples of sources extemal to the solid Earth, and they can usually

be analyzed within the simple framework of time-varying tractions applied to the Earth's

surface. Otier sources that, for many practical purposes, are also extemal, include volcanic

eruptions, vented explosions, and spalling (free fall of a surface layer thrown upward by

an underground explosion). For intemal sources, such as earthquakes and underground

explosions, the analytical framework is more difncult to develop, because the equations

goveming elastic motion (2.17)-(2.18) do not hold throughout the solid Earth. This chapter

is about internal sources, and we shall distinguish two different categories: faulting sources

and volume sources.

A faulting source is an event associated with an internal surface, such as slip across

a ftacture plane, A volume source is an event associated with an intemal volume, such as

a sudden (explosive) expansion throughout a volumetric source region. We shall find that

a unified treatrnent of both source types is possible, the common lint being the concept of
an internal surface across which discontinuities can occur in displacement (for the faulting

source) or in strain (for the volume source),

The mathematical description of intemal seismic sources has classically been pursued

along two different lines: first, in terms of a body force appLied to certain elements of the

medium containing the source; and second, by some discontinuity in displacement or sfain
(e.g., across a rupturing fault surface or across the surface of a volume source). The second

approach can usefully be incorporated into the first if we can find body-force equivalents

to discontinuities in displacement and strain. We begin our analysis by developing body-

force equivalents in some detail for simple shearing across a fault surface, showing that

radically different systems of forces can be equivalent to exactly the same displacement

discontinuity. We then develop the general theory for faulting sources, following Burridge

and Knopoff (1964), and finally we outline the theory for a volume source.

The motions recorded in a seismogram are a result both of propagation effects and

of source effects. Thus a major reason for seeking a better understanding of the source

mechanism has been to isolate the propagation effects, since these bear information on the

Earth's internal structure. Since the pioneering work of Sykes (1967), earthquake source
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mechanisms have been studied to chart the motions of tectonic plates. Sourca theory can

elucidate physical processes such as those taking place in volcanoes. It continues to be

developed with a view to predicting earthquake hazards at engineering sites, on t}le basis

ofgeological and geophysical data on the properties of nearby faults and the distribution of
regional stuesses.

3.1 Representation Theorems tor an Internal Surface; Body-Force
Equivalents for Discontinuities in Traction and Displacement

The representation theorems obtained in Chapter 2 can be a powerful aid in seismic source

theory if the surface S is chosen to include two adjacent surfaces internal to the volume y.
The motivation here comes from the work of H. F Reid, whose study of the San Ardreas
fault before and after the 1906 San Francisco earthquake led to general recognition that

earthquake motion is due to waves radiated from spontaneous slippage on active geological

faults. We shall discuss this source mechanism in more detail in Sections 3.2 and 3.3, and the

dynamical processes involved (and other source mechanisms) in Chapter I l. Our present

concem is simply to show how the process of slip on a buried fault, and the waves radiated

from it, can naturally be analyzed by our representation theorems.

For applications of (2.41)-(2.43) , w e shall take the surface of V to consist of an external
surface labeled S (see Fig. 3.1) and two adjacent intemal surfaces, labeled !+ and !-,
which are opposite faces of the fault. If slip occurs across t, then the displacement field is

discontinuous there and the equation of motion is no longer satisfied throughout the interior
of S. However, it ls satisfied throughout the "interiof' of the surface S + E+ + t -, and to
this we can apply our previous representation results.

The surface S is no longer of direct interest (it may be the surface ofthe Earth), and we

shall assume that both u and G satisfy the same homogeneous boundary conditions on

FTGURE 3.1
A finite elastic body, with volume y and external surface S, and an internal surface t (modeling

a buried fault) across which discontinuities may arise. That is, displacements on the X side of !
may differ from displacements on the t+ side of t. The normal to t is v (pointing from t- to
tt), and the displacement discortinuity is denoted by [u((, r)] for 4 on )], with square brackets

referring to the difference u((, z) 5+ - u((, z) r . In general, a similar difference may be formed
for the tractions (due to extemal applied forces on t), but for spontaneous rupture the tractions must
be continuous, and then fT(u, u)l : 0.



S-though not on t (see below).

variables and indices,

3,1 Representation Theorems for an Internal Surtace

Then from (2.41), using (2.39) and renaming some
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This formula uses 4 as the general position within V, and ( as the general position on E.

Square brackets are used for the difference between values on E+ and E- (see caption for
Fig.3.1).

As yet, nothing has been assumed for the boundary conditions on E. Although the

choice for ü must conform to actual properties of displacement and traction across a

rupturing fault surface, the choice for G can be made in any fashion that turns out to be

useful. Thus, for u, the slip on a fault leads to a nonzero value for [u], but the continuity
of haction (see the proof of (2.7), and Problem 2.8) implies fftu. ur] : O. The simplest

and most commonly used way to establish a defining property of G on E is to take E as an

artificial surface across which G and its derivatives are continuous, so that G satisfies the

equation of motion (2.36) even on E. This is by far the easiest Green function to compute

for the volume y, and (in the absence of body forces for u) it gives the representation

,,t',ü : l* a' l l"t",<e,,l,,,onu,LG,o{",, - 
r;(,0) dE. (3.2)

It is not surprising that displacement on the fault is enough to determine displacement

everywhere: this feature of (3.2) might have been expected from the uniqueness theorem.

Nevertheless, it is at first sight surpdsing that no boundary conditions on E are needed for
the Green function that describes waves propagating from the source. One might expect that

motions occurring on the fault would set up waves that are themselves diffracted in some

fashion by the fault sulface. But although this interaction complicates the deterrnination of
the slip function [u((, z)], it does not enter into the determination of the Green function used

in (3.2), and many seismologists have used this formula to compute the motions set up by

some assumed model of the slip function. We shall describe examples of such integrations

in Chapter 10.

3,1.1 BODY,FORCE EQUIVALENTS

The earthquake model we have just described does not directly involve any body forces,

though the representation (3.2) does give displacement at (x,l) as an integral over con-

tributing Green functions, each of which is the same as ifit had been set up by a body force.

Thus there must be some sense in which an active fault surface can be regarded as a surface

distribution of body forces.
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To deterrnine this body-force equivalent, we stad with (3.1) and assume still that t is

transparent to G. Making no assumptions about [u] and [T(u, n)] across E (so that sources

of haction are also allowed), we find

u,(x, t) : 
J _*0, J J J, f oQ, r )G nr{x. t - t ; n, 0) dv (n)

f@ tf r-
- 
J_*0, J J ,ll"ß.tllciipqv icnp.q(x,t - r;(,0)

- [r,t'te'.1',r] Gnpl.t-r;(,0)] dE(a). (3.3)

The discontinuities on E can be localized within V by using the delta function ö (4 - e).
For example, [T] dE (e) has the dimensions of force, and its body-force dishibution (i.e.,

force/unit volume) is [4 a(f - 6)a> as ? varies tbroughout V. The traction discontinuity

in (3.3) therefore contributes the displacement

f@ ttt I f f r r II d, lll l- lf I r"(u({, z). u) | ö(n -{)dElGoD(x,t -ri\,QJdv.J-a JJJvI JJIL' r I

Since this expression has precisely the fonn of a body-force conaibution (see ttre fißt terrn

in the right-hand side of (3.3)), the body-force equivalent of a traction disconthuity on I
is given by f H, where

ff
f trr(4, r) : - //rlr(ut€, 

z), u)16(a - l) dE(f). (3.4)

The displacement discontinuity is harder to interPret, displacement being less simply

related to fo. rce than is traction. We use the delta-firnction derivative 08(rt - O/1a, to

localize points of > within V. This function has the property

lc no{*,,-'; (, 0) : - t t t -La1a - 6yc,,1' . t - t : n,l't dv (tt).
deq ' J,t,lv o4q

so that the displacement discontinuity in (3.3) contributes the displacement

roo rrr I tt - ä |

I _*o' J J J, I- J J,l",rr. nl c,,,0,, -!- 6<4 - t, t a> 
J 

c 
"o{x. 

t - t :,t.0) dv

at position x and time r. The body-force equivalent f N of a displacement discontinuity on

E can now be recognized from this expression as

tot"l<n,o = - | ! r[u,(l,r)]c1,onv1fi;öQt - 0 dE. (3.s)
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Box 3.1
On the use of effective slip and. effecttue elastic moduli in the source region

We are using the words "fault plane" and 'fault surface," slmbolized by t, as mathematical
entities that have no thickness. Yet there are many places in the world where Earth scientists

have direct access to fault regions, arld oIIe often finds thgre a zone ofcrushed and deformed
rock, perhaps several meteß thick, so that geologists oftelr speak of "fault gouge" and a
"fault zone." What, then, is meant by oür claim that body-force equivalents depend only on
elastic moduli at the fault surface?

The fault zone itself may be as wide as 200 meters, which for most but not all pur-
poses is far less than the wavelengths of detectable seismic radiation, in which case it is the
displacement change across the whole fault zone that is the apparent displacement discon-
tinuity, initiating waves which propagate out of the source region. Therefore, in almost all
practical cases, the elastic moduli for equations (3.2), (3.3), and (3.5) are the constants ap-
propriate for the competent (unaltEred) rock adjoinirg the faült zone. Exceptions may arise

with fault zone effects that may be significant for seismic wave excitation at ftequencies of
interest to saong motion seismology (Aki, 1996).

Although the integrand here involves 27 terms (summation over i, j , q), which ale

different for each p, we shall find important examples in which only two or three terms

are nonzero. The body-force equivalents (3.4) and (3.5) hold for a general inhomogeneous

anisotropic medium, and they are remarkable in their dependence on properties ofthe elastic

medium only at the fault surface itself.
Since faulting within the volume y is an internal process, the total momentum and total

angular momentum must be conserved. It follows that the total force due to f tol, and the

total moment off tül about aly fixed point, must be zero. Thus

I I L,r"t,r,", dv (tt):o ror au r,

I I L, -4o) x rN(?,z) dY(4) :o

(3.6)

for all z and any fixed 46. ß.7)

To verify (3.6), note that the p-component of the left-hand side is
I """ ^". -. ,

- Jl>lrtl"4pqrl llJJva6O - ()/aqtdvl d>(O. The volume intesral here is

[[,6(a - $nn dS(4), which vanishes because 4 on ,l can never equal f (S and x having

no common point).
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To verify (3.7), write the m -component of the left-hand side as

fff
I I 1 r,,,,,rn, 4o,,tf)"tdv
JJJv

: - I I"''ionuifo'f

:. 
ll:^qp,ijpqvj

| [ [ [ ,.,",r^ - ,o,,!u,, - r, orldr {rrom {r s),
IJJJV o4q I

tr(i, ')l::l:i: i;';ll

l",l a>
/^\
(usine 

-ara, - ro,,-s,,,)

: 0 (using the symmetry ciipq: ciiqp).

As a simple example of a body force that is equivalent to a field discontinuity, consider

the case of a body force applied atjust one point, and in a particular direction (e.g., the body
force for a Green function, given by (2.4)). This can instead be regarded as a discontinuity in
a component ofstress. To obtain the equiyalence, take 13 as the depth direction and consider
a vertical point force, with magritude F, applied at (0, 0, ä) and time r : 0 and held steady.

Then

f(a, z) : (0,0, F)6(n)3(n)3(h- h)H(t). (3.8)

This source can instead be regarded as a discontinuity in traction across one point of the

plane (3 : l1, widr

: - (0, 0, F'), ({1), G) H (t), (3.e)

i.e., ts,T 23 are continuous, and the jump is in rr,. The equivalence of (3.8) and (3.9) can

be shown by a straightforward application of (3.4).

The most important example ofa body-force equivalent in seismology is found in shear

faulting, and we next take up this subject in some detail.

3.2 A Simple Example of Slip on a Buried Fault

The seismic waves set up by fault slip are the same as those set up by a distribution on

the fault of certain forces with canceling moment. The distribution (for given fault slip) is
not unique, but in an isotropic medium it can always be chosen as a surface distribution of
doublecouples. This conclusion was unexpected, in view of arguments used in a longlasting
debate on the question of whether earthquakes should be modeled by a single couple or by a

double couple. Those who advocated the single-couple theory did believe that earthquakes

were due to slip on a fault, but they intuitively thought for many years that such slip was

equivalent to a single couple (composed of two forces corresponding to the motions on

opposite sides of the fault). An intuitive approach is often dangerous in elastodynamics.

On the other hand, some of those who advocated the double-couple theory thought that an

earthquake must be voluminal collapse under pre-existing shear stress. The fault theory of
earthquake sources (now recognized as the equivalent ofa double couple) has gained strong



3.2 A Simple Lxample ol Slip on a Buried Faull

RGURE 3.2
A fault sudace t within an isotropic medium is shown lying in the (: : 0 plane. SIip is presumed to

take place in the (t direction across t, as shown by the heavy arrows Motion on the side ti (i e.,

(1 - 0+) is along the direction of (' increasing, and on the side t is along il decreasing

support from increasing amounts of data obtained very close to the source region, as well

as support from the radiation patterns obsewed at great distances.

As shown in Figure 3.2, we shall take the fault E to lie in the plane (3:0, so that

vl: u2:0. For the case that we are calling "fault slip", [u] is parallel to t and so [u] has

no 
"oÄpon"nt 

in the (3-direction. Let {t be the direction of slip, so that [ur] : [r.] : O.

Then the body-force equivalent, from (3.5), reduces to

f f 
^foq.rt : - 

J J rl,,r<.,t),,,,',inu,, Et d|td12

In isotropic (though still possibly inhomogeneous) media, we can find from (2.33) that all

ctro,, vanish, except ct313: cl33t: rr. Hence

ff a
fln.rt- JJrr,tt lalr{.rrl ör41 (1tör4, (rt-6tnld(tdEz-

fz1,i:o, (3.10)

ff a

fi\q.t1 : - 
J J "ulut) r;arnt \)3(rt2 $)6(a) d$dE2.

First, let us look at i, which we shall find represents a system of single couples (forces

in +4fdirection, atm along 43-direction, moment along 42-direction) distributed over t.
The integral above yields

_ _ä
fln. rt - ptntlut\tl.rtl 

A-6(4r).
(3.1i)

As shown in Figure 3.3, this component may be thought of as point forces disffibuted over

the plane 4, : 0+ and opposed forces distributed over the plane 43 : 0
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l?.

FIGUFE 3.3
Interpretive dia$ams for the fust component, /r, of the body-force equivalent to fault slip of the
type shown in Figure 3.2. (a) The spike (-a(ar), O, O) is plotted against 43. (Ihat is, a spike in
the -4r-düection, a+ing at n: = 0) (b) The derivative ((-alAl)6(a),0, 0) is plotted against 43.
The body force (fi,0,0) is proportional to this quantity (see equation (3.11). (c) Heayy alrows show
the distribution of /1 over the >+ side of t and oyer the t- side Oroken arrows). This is the body-
force component that would intuitively be expected in any body-force model of the motions shown
in Figure 3.2.

The total force due to /, vanishes (see discussion of (3.6)), but the moment of this force
component alone does not. The total moment about the q2-axis is

III,"nav:- ||l,n'ut") plu{€,if dr.

If slip is averaged over t to define the quantity

u(t) :

wnere A = IIx, dE is the fault area, and if the fault region is homogeneous (so that & is
constant), then the total moment about the 4r-axis due to fi(6, z) is simply p7Ä along the
direction of 42 increasing.

ftö@r)anraa"aor: II"



3.2 A Simple Example of Slip on a Buried Fault

FIGURE 3.4
Intelpretive diagrams for the third com-
ponent, /3, of the body-force equivalent
to fault slip [1r]-. (a) An assumed vad-
ation of slip lr,l with 4,, at fixed ,2
and i. (b) The conesponding deriva-
tive A [llr] /44r. (c) The distribution of
single forces /3 with varying 4t (see

equation (3.12)). This distribution will
clearly yield a net corlple, with moment
in the -42-direction.

The body-force equivalent, given in (3.10), also involves /3, and we shall find that this

rcpresents a system of single forces. Taking the 41-derivative outside the integration, we

find

f qr4.r 1: -fi1,l, rr.. rlI ararr. (3.12)

Although this component is not itself a couple at each point on t, in the sense that we have

shown fi to be a couple, the whole distribution of /3 across E does have a net moment.

Figure 3.4 shows how /, can reverse direction at different points of t. The total moment

about the r?"-axis is

f f I f f I alll ,nja,[3dv: lll n,i [r [,,]]atr,rJJJV JJJ\ olll

- [ [ t,*tut,,]t dlt(t<2:
JJ, oq1

d111d42 dr13

[[ t,11at,a1z.
JJI

(This last equality follows from an integration by parts, using a fault surface x defined to

have [u] : Q 6und its perimeter.) In a homogeneous source region, it follows that the total

moment due to /3 is -g,7A, which is equal in magnitude to the total moment of fi, but acts

in the opposite direction. We obtained this result in more general form in (3.7), but have

found here the two cancelins contributions that arise.
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We have now shown that fault slip is equivalent to a distribution of single couples (/1),
plus a distribution of single forces (/3) that have the net effect of an opposing couple. Yet

the classical force equivalent for fault slip is a double-couple distribution over t, as was

first shown for a finite fault by Maruyama in 1963. The fact is tlat force equivalents to a
given fault slip are not unique. A direct way to see this, and to obtain the double-couple

density as well as the single-couple/single-force density, is to write out representation (3.2)

for the fault slip described in Figure 3.2. The result is

/^ 
c. ( 

^ ^ )

u,(x.t): I o, ll ,1")lo9't * o9'r 
Ia:.' J o. JJt ld(, alt I

The first telm here in curly brackets, äG,,(x, r r; E,0) /Ah, is the limit of

G,1(x,t - z;{ 1e{3,0) -Gn/x,t - r;( - e(3,0)

r1llr

This force system is illustrated in Figure 3.6; clearly it is the same as the system we found

first of all, shown in Figures 3.3 and 3.4. There is always a single couple (fi, Figs. 3.3,

3.5a, and 3.6a) made up of forces in the same direction as fault-sudace displacements

(Fig. 3.2). But a complete equivalent to fault slip has another part, which may be regarded

as a distribution of single forces (/3, Figs. 3.4 and 3.6b), a distribution of single couples

(Fig. 3.5b), or an appropdate linear combination of these alternative extremes. For a given

element of area dE on the fault, these force systems are physically quite different: from the

integrand in representation (3.13), there appears to be no forca or moment acting on d>;
but from (3.14), there does appear to be both force and moment acting on d:, although we

showed earlier that i and /3 integrate to give zero net force and zero net moment on the

whole of E.
We have brought out these results in somedetail, becausethey showthe limited utility of

force equivalents for studying the actual forces occurring in dynamic processes offault slip.

Whereas the body-force equivalent to fault slip is unique (see Box 3.3), force equivalents in
the sense of this section are llo/ unique (forca equivalents in this case being force/unit area

on a finite fault). It is the whole fault surface that is radiating seismic waves, and we cannot

/1 11\

2t

as e -+ 0. (We take f, as a unit vector in the {,-direction.) This is the single-couple

distribution shown in Figure 3.5a. The second term in (3.13) involves the limit of

Güg,t - r',e + €e1,0) Gß$,t rtt - €et,o:)

2e

and this single-couple distribution is shown in Figure 3.5b. These two systems form a
double-couple distribution, and we must ask why the earlier set of body-force equivalents

we derived, (3.10), made up a single couple plus a single force. The answer can be seen if
one term in (3.l3) is integrated b) paflr. giving

u.t*.,t: l* a" ll",(vt ? [ä] 
.,.)0,



3.2 A Simple Example of Slip on a Buried Faull

(r)- 
-

FTGURE 3.5
The radiation from these two
distributions is the same as

the radiation from slip on a
fault. In this sense, these two
single-couple distributions,
taken together, are equivalent
to fault slip. Note that there
is no net couple, and no net
force, acting on any element of
area in the fault plane ((3:0).

assess from (3.13) or (3.14) the actual contribution made to the radiation by individual

elements of fault area. This makes sense in physical terms, because individual elements

of fault area do not move dynamically in isolation from neighboring parts of the source

region. Force equivalents (usually chosen as the double-couple distribution) find their main

use only when the slip function [u((, r)] has been determined (orguessed), and then they are

important because they enable one to compute the radiation by weighting Green functions.

At great distance from a rupturing fault, it often occurs that the only waves observed

are those with wavelengths much greater than linear dimensions of E, the causative fault.

-rt'

FIGURE 3.6
Another force system that is
equivalent to fault slip (compare

with Fig. 3.5). (a) and (b) here

constitute a single-couple plus

single-force system, which has

zero total couple and zero total
force for the whole fault surface.

But individual elements of area

are acted on by a couple and a

force.
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(Higher frequency components are relatively weak even at the source-see Chapter 11-
and are more effectively attenuated düring propagation.) In such cases t acts as a point

source, and if we also assume that the only waves observed have periods much longer than

the source duration then the slip is localized by replacing [u((t, (r, r)] by the concentrated

distribution uAö({) S(E)H(t). Then /,, as well as ./'' becomes a single couple, and the

double-couple point source equivalent to fault slip is

a
ft(rt, t) : -M63(n)6(n) *ö(a)11(r)

fz@, ') 
: o

a
fr{4. r I - - M q rl3r n,t6t\ 2t6(41)H(r).

(3.15)

where

Mrr: 1L,iA: p x average slip x fault area. (3.16)

We call Mn the seismic monent. It is perhaps the most fundamental parameter we

can use to measure the strength of an earthquake caused by fault slip. Measured values of

Mo rarlrge from about 1030 dyn-cm (1960 Chilean ealthquake, 1964 Alaskan earthquake)

down to around 1012 dyn-cm for microearthquakes, and 105 dyn-cm for microfractures in

laboratory expedments on loaded rock samples. Even for geophysics, twenty-five orders

of magnitude is an exceptionally large range to be spanned by a single physical variable'

The first person to obtain the double-couple equivalence for an effective point source ofslip

was Vvedenskaya (1956). The fust estimate of seismic moment was made by Aki (1966)

for the Niigata eafthquake of 1964, using long-period Love waves observed by the World-

Wide Standard Seismograph Network. Moment estimates are now made routinely within

hours, or even minutes, after the occurrence of significant earthquakes. The limiting factors

are the time taken for seismic waves to travel through the Earth's interior to the stations

whose data are used; and the time taken for the recorded waveform data to be passed to the

processing site where the estimate is made.

Kanamori (1977) introduced the concept of noment magnitude to seismology This is

simply a magnitude scale based on the seismic moment of an earthquake, which must first

be estimated. His definition of the moment magnitude, denoted as Mw, is

log Mo: L5Mw + 16.l (3.t7)

in which the constants were chosen so that Mw is approximately the same as the surface

wave magnitude (see Appendix 2) for a cartain class of earthquakes Magnitude scales in

seismology have traditionally been defined empirically' usually as some type of distance-

coüected meäsure of the stength of ground shaking. Howevel the moment magnitude,

being derived from a physical characteristic of the source (namely, M6), is fundamentally

different from these empirical magnitudes



3-3 General Analysis ol Displacement Discontinuities across an Internal Surface t

We have defined M0 as a constant, but for some purposes it is useful to evaluate the

seismic moment as a function of time, given by pu(t) A,itwhich t is averaged at time t. In
these cases, M0F1(z) in (3.15) is replaced by M6(z), and (in the terminology of Chapter 10)

we speak of the "rise time" being different from zero.

Note that there is a fundamental arnbiguity in identirying the fault plane associated with
the point-source double couple (3.15). We have worked in this section with a fault surface

normal to the .r3-direction and slip parallel to the rl-dircction. If the fault surface instead

is taken normal to the -r1-direction and slip is taken parallel to the -{3-direction in a faulting
episode with the same moment, then the equivalent body force is again (3.15). It follows
that there can be no information in tle seismic radiation or static displacement field from
an effective point-source of slip that will enable one to distinguish between the fault plane

ardits auriliary plane (i.e., the plane perpendicular to both the fault and the slip).

3,3 General Analysis of Displacement Discontinuities across
an Internal Surface t

ln this section we introduce the seismic mo ment tensor ,M.'fhis is a quantity that depends on

sowce strength and fault orientation, and it characterizes all the information about the source

that cal be learned from observing waves whose wavelengths are much longer than the linear

dimensions of E. In this case, the source is effectively a point source with an associated

radiation pattem, and the moment tensor can often be estimated in practice for a given

earthquake by using long-period teleseismic data. In practice, seismologists usually use

moment tensors that are confined to sources having a body-force equivalent given by paüs

of forces alone (couples, vector dipoles). Such sources include geologic faults (shearing)

and explosions (expansion), with M as a second-order tensor. For forces differentiated more

than once, sources can be characterized by higher order moment tensors (see Jultar' et al-,

1998).

For sources of finite extent, we shall introduce the seismic moment d.ensity tensor, m,

which can often be thought of as dM/dE, or as dM/dV for avolume soutce.

There are two ways in which this section generalizes Section 3.2. Ftst, the coordinate

axes are not taken in directions related to directionalities of the source. (This generality

is important, because the direction of slip and the orientation of the fault plare are not

usually known a p/ioli, but must be deduced from the radiated seismic waves.) Second,

discontinuities are to be allowed in the displacement component normal to t}le fault plane,

so that expansions or contractions can be simulated.

Our starting point for tle general analysis of displacement discontinuities is the repre-

sentation (3.2), but using now the convolution symbol x so that
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(3.18)

Note that / * g : ß fk)sG - i rlt : fi f(t - r)s?) dr :14 /tr)s(r - r) dr if
/(t) and g(t) are zero for I < 0. If X0 is the amplitude of a force applied in the p-direction

at ( with general time variation, then the convolution X6 + Goo gives t}le n -component

of displacement at (x, r) due to the varying point force at f. More generally, if the force

u,lx.I): [[JJU

A
lu, I v,c,.-- '4 -G-- 

dt.L 'J ] IJPq Ar
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HGURE 3.7
The nine possible couples that are required to obtain equivalent forces for a generally oriented

displac€ment discontinuity in anisotopic media.

applied at ( is F(, z), then we can sum over p ax.d wIiIE Fp * Gnp for the n-component

of displacement at (x, r). For displacement discontinuities as in (3.18), there are instead

derivatives of Gro with respect to the source coordinates (q. Such a derivative, we saw in
Section 3.2, can be thought of physically as the equivalent of haviag a single couple (with

arm in the (n-direction) on E at f. The sum over 4 in (3.18) is then telling us that each

displacement component at x is equivalent to the effect of a sum of couples distributed

over >.
For three components of force and tbree possible arm directions, there are nine general-

ized couples, as shown in Figure 3.7. Thus the equivalent surface force corresponding to an

infinitesimal surface element dX(€) can be rqnesented as a combination of nine couples.

In general, we need "couples" with force and arm in the same direction (cases (1, 1), (2' 2),

(3, 3) of Fig. 3.7), and these are sonetimes called vector tlipoles.

Since [u,] v iciipq * AG op/01q in (3.18) is the n-component of the field at x due to

couples at {, it follows that [ur] urc,oo is the stength ofthe (p,4) couple. The dtunensions

of fui]viciipq are moment per unit area, alrd this makes sense because the contribution

ftom 6 has to be a surface density, weighted by the inflnitesimal area element dt to give a

moment contribution. We define
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m |q : fu il, jcijpq i/l lo\

to be the components of the moment d.ensity tensor, m, In terms of this symmetric tensor,
which is time dependent, the representation theorem for displacament at x due to general

displacement discontinuity [u((, z)] across E is

I

l

(3.20)

When we have leamed more about the Green function (in Chapter 4), we shall find that the
time dependence of the integrand in (3.20) is quite simple, because ifx is many wavelengths
away from (, then convolution with G gives a field at (x, /) that depends on what occurs at
( only at "retarded time," i.e., I minus some propagation time between ( and x.

For an isotropic body, it follows from (2.33) and (3.19) that

m oo 
: )"v1la1t(. r r] 3 on - u (v rl, o, <., t] - rnl, rC., t]) . (3.21 )

Further, if the displacement discontinuity (or slip) is parallel to E at 6, the scalar product
u . ful is zero and

tltr e,t 
: p (v t) f" rl + t, l" r]) (3.22)

In the case of > lying in the plane (::0, with slip only in the (,-direction, we have
the source model considered in Section 3.2, and for this the moment density tensor is

loo
': l* r,,.oa,',1 3

which is the now familiar double couple.
In the case of a tension crack in the 6::0 plane, only the slip component [r]] is

nonzero, and from (3.21) we find

l),fur(t.ttl 0 0 \m:l 0 ^la,r(.rrJ o- .l\ o o (^"-2p)lurt1.rt]/

Thus a tension crack is equivalent to a superposition of three vector dipoles with magnitudes
in the ratio | : | : (), | 2p,) / ), (see Fig. 3.8).

The above results have been developed for a fault plane E of finite extent, but in practice
the seismologist often has data that are good only at periods for which the whole of E is
effectively a point source. For these waves, the contributions from different surface elements
dE are all approximately in phase, and the whole surface t can be considered as a system
of couples located at a point, say the center of >, \Nith moment tensor eqtral to the integral
of moment density over E. Thus, for an effective point source,

,,t*,tl: I l"mou+ 
Gno.o d>..

,t,f.,",),

)

un(x,t): Mro* Gno,n, (3.23)
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FIGURE 3.8
The body-forca equivalent for a tension qack in an isotropic medium.

where the moment tensor components are

f f f f - - dM--
Mro: JJr^ooor: JJrfu,]v,c,,ondE. 

i.e., *rn: a#. ß:24',

In (3.23) we have one of the most important equations of this chapter. Laier in this book,

we shall evaluate the Green function and the different waves it contains. Thus in ChaPter 4

we shall use ray theory for G ard interpret (3.23) in terms of body waves excited by given

M (equation (4.96)). In Chapter 7, we shall find the surface waves excited by M (equations

(7.148F(7.151), and in Chapter 8 the normal modes of the whole Eaxth (8.38).

In terns of seismic moment Mo, and with the choice of coordinate axes made in
Section 3.2, the moment tensor for an effective poiat source of slip is

M: (3.25)

Equations (3.24) justiry tle name "moment tensor density" for m. h the case of a
finite source, we can now interpret the representation (3.20) as an areal disaibution ofpoint
soürces, each point having the moment tensor m dt.

We conblude this section with an interesting use of "seismic moment," suggested

by Brune (1968), involving the kiaematic motions of tectonic plates. Such motions lead

ftequently to a type of regional seismicity in which many different earthquakes share the

same fault plane (although any one event will involve slip over only a part of the whole

fault arca). If M6 is the seismic momelt of the ittr earthquake in a series of ly' earthquakes

in time interval 
^ 

f , it follows from the definition of Ml that the total slip due to the whole

series is

(;sT)

L, M6

L\U : --------=-,
ILS

(3.26'
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BOX 3,2
On uses of the worcl "moment" in seismic source theory

In rotational mechadcs, it is often enough to speak of a couple possessing the qualities

of magnitude and a single dircction. Tbe magnitude of a couple is then a scalar quantity

called the moment. In our study of displacement discontinuities, however and body-force

equivalents, we imply more directional qualities behind the word "couple" than is the case

in rigid-body rotational mechanics. Fol us, "couple" involves the directions of both force

and lever arm. A result of this is that the quantity "moment"jumps up from scalar to tensor'

Second-order Cartesian tensors in mathematical physics are usually quantities thatrelate

one physical vector to another. One example is given by equation (2.16), in which the stress

tensor is a device for obtaining traction from the vector odentation of an area element.

Another example is the inefiia tensor I, which gives angular momentum h fiom angular

velocrty a via h i : I 
i jri.rr. In seismic source theory however, the moment tensor is an input

rather than a filter, and ia is operated on by a third-order tensor to yield vector displacement
(see (3.20) and (3.23)).

where S is the total area broken in the series. AU is averaged over all of S, and a1l the terms in

tle right hand side of (3.26) can be estimated. If all the plate motion occurs seismically, and

ifthe seismicity during 
^7 

is representative of the activity on that plate margin for longer

time scales, then LIJ I LT is an estimare of the relative velocity of the plates, regarded as

slow-moving rigid bodies, and it can be obtained from seismic data alone.

3.4 Volume Sources: Outline of the Theory and Some Simple Examples

In order to develop equations for seismic waves from buried explosions or from rapid

phase fansfomations, it is necessary to introduce the concept of a volume source. We

shall describe such a source in terms of a transformational (or stess-free) strain introduced

in th€ source volume, and shall develop properlies of an associated seismic moment tensor.

Let us illustrate this concept by a set of imaginary cutting, stuaining, and welding

operations described by Eshelby (1957). First, we separate the source material by cutting

along a closed surface t that surounds the source, and we remove the source volume (the

"inclusion") from its surroundings (the "matrix"). We suppose that the matedal removed

is held in its origi.nal shape by tractions having the same value over t as the tractions

imposed across t by the matrix before the cutting operation. Second, we let the source

material undergo transformational stuain 
^?f". 

By this, we mean that Aelr occurs without

changing the stress within the inclusion, hence the name "shess-free strain." It is this

strail that characterizes the seismic source. Processes that can be described by stress-free

strain include phase transformation, themal expansion, and some plastic deformations.

Stress-free strain is a static concept. Third, we apply extra surface tactions that will
rcstore the source volume to its original shape: this will result in an additional stress lield

c pqr" Ler, : L" oq throughout the inclusion, and the additional tractions applied on its

surface x are -cpq,, Ler"vq,where un is the outward normal on t. Since Azpq is a static

freld, A.t rr,n: 0. The stress in the matrix is still unchanged, being held at its original value
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BOX 3.3
Body-force equivalents and the seismic moment tensor

For a general displacement discontinuity across t, it follows from (3.5) that

f : ]'
J P u'- l[")'i"'tr"3(t)J '

where, by 6(X), we m"uo u on"-otln"orionul spatial Dirac delta fuirction that is zero off t'
Thus, if X lies in the plane 43 : 0, ä()]) : , (4t for points (4r, 42) on t.

It must be emphasized thät f is a force per 
-unit 

volume' and iiis unique. (Once [a,] is

given on t, then u is determined everywhere, and f - L(u), where L is given in Box 2 4 )

The ambiguities mentioned in Section 3.2 arise only when equivalent J,dace forces are

sought. Thus the above formula for /p does not give a distribution ofcouples and dipoles'

Such a distribution arises only atter the displacenent representation l![, G,o{f o} dv has

been integrated by paits and the 43 integration completed to give (3.18), which may then

be interlreted in terms of equivalent sudace forces. These are nonunique-see (3.13) and

(3.14)-but a surface distribution of couples and vector dipoles is always pos-sible

WehaveintroducedtheseismicmomenttensorintheformMr4:,1[rlut]v,c,tond>,
but from the above formula for body force it is easy to show that

,*: 
JJJ,Ion,dvrqt.

This result can be used to extend the definition of M, since it can be used for any body-force

distribution, and notjust for the body-force equivalent to a displacement discontinuity With

this definition, the moment (in the ordinary sense of lotational mechanics) of body-forces

f about the ith axis is Jffv eijk4j f1, dV : e1,oMo,, which is zero whenever the moment

tensor is symmetric (e.g.,1n (3.24)).

by tractions imposed across the internal surface !, and having the same value as tractions

imposed on the matrix by the inclusion before it was cut out. Foufth, we Put the inclusion

back in its hole (which is exactly the correct shape) and weld the material across the cut'

The üaction on x- is now an amount -cno., Ler"va greater than that on >+, leading

to a traction discontinuity (in the u-direction) of amount lcon,, Le,"vq This haction is

due to applied surface forces that are extemal to the source and which act on the inclusion

to maintain its corect shape, Fifth, we release the applied surface forces over t Since

traction is actually continuous across E, this amounts to imposing an apparent haction

discontinuity of (crqrs Ae.,)un. The elastic field produced in the matrix by the whole

process is that due to the apparent haction discontinuity across t.
The above procedure can be extended to a dynamic case of seismic wave generadon,

since, at any given time, a transformational shain Aer" can be defined for the unreshained

material. For each instant, it is still true that LTpq'4:0 because stress-free strain (and

the stless dedved from it) is a static concept. The seismic displacement generated by the
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BOX 3.4
The strain energy released by earthquake fauhing

Wiftin a medium that initially has a static suess freld o0, we suppose that a displacement

discontinuity develops across an intemal surface E. This leads to a displacement field

u(x, t), measurcd with reference to the initial configuration, and from u we can determirle

the additional time-dependent strain and the additional stess t. Then the total stress is

a = o0 + r, and after all motions have died down the new static sfess field is ol. lf 
^Eis defined as the change in strain energy throughout the medium, from its iritial static

conf,guration to its final static configuration, it can be show[ that

^E. 
j l-lu,f w!,+o,1,tv,dE (ll

wherc [u] is the final offset. (See Fig. 3.1 for def,nitions of [ ]and u.) Equation (l) is

krown as the Volterra relation (Steketee, 1958; Savage, 1969a).

This result (which we derive below) can be simply restated in terms of work apparently

done by tractions on the fault surface. We can say from (1) that the drop in strain energy

throughout the medium, -AE, is the positive quantity obtained by irnagining a quasi-static

srowth of traction that is linear with offset:

r : ro + cl - rot{; ror o=u 3lul (2)

(for each compo[e[t of traction ? and displacement U). Integating from 0 to [r] to get the

total work done on t ther gives (1).

Several points now need to be made about this rclation between A-E and the average

stress.

The liberated energy, -^E, supplies the work actually done on tle two faces tr and

t- as they gdnd past each other, plus the work done in initiating the process of fracture'

We discuss these two types of work in Chapter I 1 . Moreovet - 
^ 

E supplies the seismic

energy E, that is radiated away ftom the souce region. It is natural to intoduce the reimic
eficiency,4, asthe ntio t,/(-^t). Then

Es: -,t ^E:ln [-1,)o]+"]1t,,a>. (3)

If the average of the two stuti" t u"tions a*lnot vary strongly over t' then for the type of
tangential slip shown in Figue 3.2 we see that (3) can be expressed in tems of the moment

Mo: p I> [u,] d>. This gives

E": 4Moa /p., (4)

where a: llolr+ ol;.
From estirnates that can be made of 8,, M6, and p, it thus becomes possible from (4) to

estimate the product 4d, c lled the apparent stress by Wyss and Brune (1968, 1971). The

reason for this name is that 4a would be the stess that appeal,t to be acting oü the fault,

if we make the assumption that the observed radiated energy is equal to the liberated strail
energy. (The assumption here is not a good one. The seismic efficiency is at most a few

percent, so that or y a small ftaction of the liberated energy is radiated as seismic waves.)

(continued)



56 ChaDter 3 / REPRESENTATION OF SEISMIC SOURCES

disconthuity in taction was given by (3.3). Putting I%i: -(con," Ae'1)vo in (3.3), we
get

""(',, : I: o' I L","^ ^e,svqcnp(x,t 
-t; €,0) dt(€). (3.27)

If the integrand and its derivatives with respect to 6 are continuous, we can apply the Gauss

theorem to obtain

u,<*,ü: l* * IILä

Box3.4 (continued)

Since the slip function [u((, r] in (3.18) detemines all displacements (and hence strain
and stuess indements) throughout the medium, it also deterrDines the stress drop, o0 - o l.

But there is oo way one can work puely ftom observations of the mdiated field u(x, t) and
leam anything about the absolule level of stress in the sowce rcgion, Putting this another
way, and usiDg (1), one cau make the following statement. Ifthe same slip function [u((, r)]
occu$ on > in two different far.rlting events with different initial stresses, then all the seismic
displacemetrts $/ill be the same for the two events: but the sftain energies liberated for the
two events may be quite di.ffelent.

It remains, then, to prove our main rcsult (1). This is a fomula of grcat generality, and a
corect derivation can be given by considering the quasi-static deformation lve descdbed in
(2). We shaü give an explicit proof for the special case in which the intemal strain eneryy
U is given by a straircnergy function W (see Section 2.2). FurttEr, we assume there is an
accessible refercnce state of zero stess aud zero sftain. The initial stresses and stains iust
prior to faulting are o,rQ and e!r, and u is measured ftom this state.

From (2.32) applied to the total stresses and sftains, we get

w : +(4 + rd@? j + uL) (usiDg syEmetry of oü)

:Wo 'l |oiiri,i I 4"iin *,r"?t

:'Vlo + loiiu;i + lo!1u1,,1 (using (2.30)).

Thus the increase in internal energy in the new static configuration is

^E: Iv(wt -wo) dv = i lv@/j+fi)utjdv,
(5)

where V is the whole elastic volume containitrg ! (see Fig. 3.1). Since a.| and o,) are static

stress flelds, (2.17.) implies o,.Jq,j : o,.1; :0 (we assume therc are no body fotces). From
(5), we obtain

^E 
: + Ivkli + 6ttj)u il. j.tv,

to which we can apply Gauss's divergence theorem, rcgading y as the interior of S + t+ +
>-. This does give (1) if S is a rigid surface, or if, like the surfaca of the Earth, it is free.

f"oo,, 
L",,Gno(x,t - z; €,0)] dvc) Q.zs)



(V here refers onlY to the

ä(con,, Le,") /o(n: atpq,q

r r r AG^
,,t*.n: 

JJ J,c,o,, ^e,,* 
---t! dv

Comparing this volume integral with the surface integral in (3'18)' one sees that it is natural

t0 infoduce a moment-density tensor

dM-..
-ll!3 : c oo,, Le," (3.30)

with the dimensions of moment per unit volume (compare also with (3'24))' Then

aG-^
--__::!: dv -

a(q

*-: I | 1,"'*' Le'" dv '

Note that Azd :dMpq/dV is not the stress drop (the difference between the initial

e4uilibrium stiJss and tLä final equilibrium stress in the source region)' as is clea'r from its

definition. The stress drop is not lirnited to the source volume' but Azp4 vanishes outside

the source volume. Äzrn is called the "stress glut" by Backus and Mulcahy (1976)'

For long waves, fä which the whole of V is effectively a point source' the whole

volume v can be considered a system of couples located at a point, say the center of v,

with moment tensor equal to the integral of moment density over V Thus' for an effective

Doint souce, (3.23) applies, with the moment tensor components

3.4 Volume Sources: Outline of the Theory and Some Simple Examples

volume of the inclusion, i.e., the source volume)' Ushg

: 0, we can rewrite (3.28) and obtain

(3.2e)

(3.31)

(3.32)

M:2uV /t ?t\

57

r r r dM^^
un$.'): JJJ, of "

For example, if a shear collapse occurs in a homogeneous isotropic body of volume

VwiththenonzerotuansformationalstraincomponentsLes:L41'say'themoment
tensor is

(j,, I ^1',)

The seismic radiation is identical to the point source equivalent to a fault slip, except that

the seismic moment Mois givenby 21t' 
^el3v' 

For a group of earthquakes in an intraplate

seismic zone, a cumulative strain may be more meaningful than a cumulative slip given

by (3.26). Kostrov (1974) suggested summing moments for a group of earthquakes sharing

,h" ,u-" ,our"" -"chanism in a given volume to find the total strain in the volume From

(3.33), the total strain ÄE13 may be estimated as

N
F/l,'1

^Eß:;-;,

where Mi is the moment of the ith earthquake'

(3.34)
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Finally, let us consider a spherical volume with radius a undergoing a transformational

expansion. The stress-free strain components in this case arc Len-- Leß: Lez: : 0 and

Les: Le22: L%3: I Lv /V , whete LV /V is the fractional change in volume and

y : 1tt o3. For this expansion in an isotropic medivrrt, c pq," Ae," : (l * 3D3 p,t LV / V

and ftom (3.32) we have

M:
0\o l.

(x + trp.)w /(*. r'^"
0

(). + 3r-r.)^Y
u

r115\

Thus a spherical source with transfomational volume expansion is equivalent to three

mutually perpendicular dipoles, as shown in Figue 3.7 In the above equation, AV is the

stress-free volume change and should not be confused with the volume change öy of a

confined source region, as discussed in Problem 3.8.
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Problems

3.1 Equations (3.26) and (3.34) are written as scalar equations, because in their deri-

vation it has been assumed that earthquakes in a given region (on S, or within y)

all have moment tensors with the same orientations.

Generalize (3.26) to a vector equation and (3.34) to a tensor equatlon rn cases

where earthquakes in the series (on S or in y) have moment tensors of arbitrary

orientation. (For (3.26), howeveq continue to assume that the displacement dis-

continuity for each event is a shear and that S is plana.r.)

In our derivation of (3.2), we have assumed that the elastic moduli are contrnuous

across t and that G,p and AG^p/AE,t are continuous. If the elastic moduli are

not continuous across E, interpret part of the integrand in (3 2) as a trachon,

and show that this representation is still valid, although AG^p/Atq may not be

continuous across the surface. (Nole.' For purposes of defining G, assume E+ and

E- have been glued together. These surfaces-which can still move-then do not

have relative motion.)

In the discussion following equations (3.15) and (3.16), we introduced the time-

dependent seismic moment given by M0 () : p'n0)A.Isn(l) here averaged over

the area A(/) that has ruptured at time t, or is it averaged over A(oo), the area that

ultimately is ruptured during the seismic event under consideration? (Ilinr" Does

it matter?)

3.4 Show that the moment tensor M described in tems of a double couple in Sec-

tion 3.2 and equation (3.25), i.e.,

M:

can equivalently be described bY

;
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where components ofM are now referred to the principal axes of M as coordinate

axes. (By defnition, the principal axes of a symrnetric tensor are such tlat the

off-diagonal components of the tensor' referred to these axes, are al1 zero')

In tems of body-force equivalents, this result is illustrated by the following

diagam:

il _.-1t-
This shows that a tlouble couple is equivalent to a Pair of vector dipoles, equal in

rnagnitude but opposite in sign.

3.5 Show that a seismic point source described by a s1'rnmetric second-order moment

tensor M catr be thought of as an isotropic point source M, plus two double couples'

Is this a unique decomposition of such a point source?

Show that M can also be $ritten in the form

0

-i
0

in which M, (i : 1, 2, 3) are the principal moments. The last term here is called a

"compensated linear vector tlipole,' having axial symmetry and no volume change'

ff M;- M2is the largest difference between principal moments, tlen MoD
qüantifies the extent to which the deviatoric part of the moment tensol diffeß ftom

a pure double couPle.

Show that the body-force equivalent to a point source at ( with moment tensor

M oo 
is given by

f o$,t\: -MonQ)fat* - 6;'

Consider a spherical cavity witl radiu, o iorlJ" u notogeneous isotropic body'

When a udform step in pressure, 3p H (t) , is applied at the surface of the cavity,

spherically symmetric waves will be generated, which have displacement only in

the radial dilection. After the waves have passed, displacement everywhere tends

to its final stätic value, which chffacterizes the final outward expansion due to the

applied pressure in the cavitY.

a) Use the vector wave equation of Problem 2.1 to show that this static displace-

ment satisfies V(V 'u) :0.

OU

E\

l).'"'*M:Mr+(r,-Mr (3 
j1 (t' t)

J.O
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b) Hence, in this problem with spherical symmetry, show that the radial displace-

ment is proportional to llrz (fot a 
=r, 

so that this is a so-called extemal

solution).

Show from equations (2.50) and (2.46) that for this problem the radial stress is

given by

r,,:tx+zplf r4u,.

d) The walls of the cavity will oscillate at first' after the constant step ln pressure

is applied, but will eventually be displaced outward a constant amount Let this

final static displacement be ö4. Show that

3a
öP :4tt'-

3.8 Suppose that a spherical volume with radius a, inside a homogeneous isotropic

unbounded medium, undergoes expansion with stress-free volumetric strain given

by LV /V where V : jrra3. The moment tensor is given by equation (3'35)' but

now we shall consider the effects of the rest of the medium, which prevents the

actual strain from attaining its stress-free value.

The confinement of the source region means that instead ofradius a expanding

to a + La (where A V is given to first ord erby 4n a2 La)' and being subjected to

zero pressure, the final static radius is given by a + ö4, subjected to pressure öP'

We can build upon the results of Problem 3.7 to obtain relationships between the

stress-free changes characteri zed by La and AV (see equation (3'35)) and the

actual final static changes, öa and 6V.

a) Use the method of Problem 3.? to show that within the source region the final

static radial displacement is proportional to r. (This is the so-called intemal

solution.) If Ä is the constant of proportionality such that the static radial

displacement is Ar, show that the associated radial stress ur' is a constant and

the fina1 static value of pressure throughout the source region is

6p:-(3L+2tL)4.

b) For this problem we can evaluate key steps in the series of cutting and welding

operations first described by Eshelby and covered in Section 3 4 The static dis-

placement of the surface of the source tegion, due to the effects of confinement'

is from 
^a 

to öa as pressure changes from the stress-ftee value (which is zero'

by definition) to the final actual static value, öp. Show then that

rp:3)a2L16o - 5o',
a

and hence, from a relationship given in Problem 3'7, that

)"+2tt "La: _OA.

^+ ilL
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c) As indicated in equation (3.35), the moment tensor is isotropic. In general

M ptj: Mo1)6pq is a function of time that depends on details of the process

by which the source region undergoes its change in properties. The final static

value from (3.35) is given by

Mo(oo) : (x + 2ztt) LV

where AV is the final value of the stress-free volume change. Show that it is
also given in terms of the actual final (static) volume change öV by

M6@c) : ()' 1.zrt') 3v.

d) Show that the actual volume change 6V is independent of d, in the sense

that having proved Ms(oo) -- ()' + 2p)6V as above for some small value of
4, we can choose a larger value of a and evaluate the outward actual static

displacement for this new surface. But d y is unchanged in value. (I1int: Use

the exterior solution, mentioned in Problem 3.7.)

[We shall find in later chapters that the time-dependent moment is an

important property of the seismic source, which can often be obtained from

seismograms, and that the final value M6(oo) is related simply to the long-

period spectrum of observed signals. Our equations relating moment to Ay
and 6V enable measurements of Mokn) to be interpreted in tems of volume

change at the source, for isotropic sources. We see thatthe actual volume change

of a source that wants to expand, öV in the present problem, is approximately

half the size of the stress-free volume change (since (Ä * 2 tt) /(x + Ztt) - 2),

as noted by Müller (2001). Earlier, Müller (i973b) showed that for isotropic

sources the scalat moment is (,}" + 2p) x area x outward displacement. In the

notation used here, area x outward displacement : 4.na2 x öa : dV. Explo-

sive sources are sometimes quantified by this volume change. We are free to

take the value of a large enough to confine all nonelastic procasses to the inte-

rior region, and as noted above the actual volume increment öy has meaning

independent of any value of a. The actual volume increment öV represents

the expansion that the nonlinear source region applies to the external linearly

elastic region. Müller's 1973 result complements the fact that for shear fault-

ing the double couple is based on a scalar moment given by p x area x slip.

This too can be thought ofas the output from the nonlinear region, where rocks

are fracturing and shearing, applied to the extemal elastic region. The product

given by area x slip is called the p otenc!. Heator\ ar'd Heaton (1989) and Ben-

Zion (2001) recommend that the potency be used to quantify earthquake (shear

dislocation) sources, instead of the seismic moment (p x potency). Like öV,
potency has the dimensions of volume change. The potency, 6 V, and seismic

moment all provide ways to characterize quantitative attributes of the nonlinear

source, which are needed to interpret measurements made in the linearly elastic

resion.l


