
CHAPTER

Basic Theorems in Dynamic Elasticity

An analytical framework for studying seismic motions in the Earth must incorporatc, at the
very least. the fbllowing thlee components: a description of seismic sourccs- equrtions
for thc motions that can propagate once motion has somewhere been initiated. and a

tlleory coupling the source description inte the particular solution sought for thc equations
of motion. It will be useful if thc theoly can be simplified by taking full advantage of
our conjectures about seisnic motion (thor.rgh such a theory may mislead the user if the
conjectures are invalid). For example, there is the coniecture tltat two scts of snrall motions
may be superimposed without intelt'ering with each other'. Another conjecture is that the
seismic motions set up by some physical source should bc uniquely determined by the
combined properties of that source and the medium in which the waves propagate. These
conjectures, and many othcrs that are generally assumed by seismologists to be true. arc
properties of infinitesirral motion in classical continuunr mechanics fbr an elastic medium
with a linear stress strain relation: such a theory will provide the mathematical framework
fbr almost all of this tcxt.

Seismology is largely an observational sciencc, se the ability to jnterpret seismogtams
is fundamental to progress. For this reason. thcre is a need to know what infolmation about
the motion in one palt ofa medium is enough to determine uniquely the motion that may be

observed in anothcl pafi. As a practical example, we otten need to know how to charactedze
a seismic source (an explosion or a spontancous fault motion) and how to allow for boundary
conditions at the Etrnh's tiee surface in order to determine tbe resulting motion at a network
of receivers. Foftunately, for a linear clastic medium, this problem has a definite solution.
in that prescribed source conditions (in terms of body forces) and boundary conditions
can readily bc stated in fomrs that clo enfbrce uniqueness for tlte resulting motions. After
giving a formulation of the problcm (i.e., establishing norarion: defining displacemenr,
strain, traction. body force. and stress; and stating constraints on tlte motion), we provc
the two fundamental theolems of uniqueness and reciprocity. Reciprocity is used togeLher

with a Green function to obtain a representation of motion at a general point in the medium
in tenns of body tbrces and infbrmation on boundaries. This mcthod ()1' representation in
elastodynamics is due to Knopoff ( 1956) and de Hoop ( 1958). It has many lämilial parallels
in complex number theory, in potential theory, and in the thcory of thc scalar wave equation
for a homogcneous nredium. 11
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BOX 2.1
Examples of rep re s e ntation t heoremr

L If /(z) is an analytic function of the complex variable z, then

|,_, | 6 r-s:!!
lnt J < z

wherc the contour integral is taken counterclockwise on any path C around the point

z. (No singularities of / are allowed insidr: C.) This formula is then a repr..\en!dtion
of Lhe function f, which allows / to be evaluated everywhere inside C provided the

vrlucs of / :ue knou n on C itsell.

2. Il QG,y,z) satisfies the Poisson equation V2O: 4ttp, then

a\'tt: [[[ Ptltdv-tt\.
JJJv lx q

where y is a volume including all ofthe density distibution p that contributes to d.
This too is a rc/rr?sentdtion of d, but one that does not involve values ofd itself.

The elastodynamic representation theorcm involves both the above lypes of rep-

resentation, and ilso incorporates time dependence.

It is often useful to have the equations of elastic motion referred to general orthog

onal curvilinear coordinate systems, since, in many instances, the (curved) coordinate

surfacas are just those on which it is natural to apply a boundary condition. We derive the

displacement-stress equations and the strain-displacement equations, using the physical

components of displacement, stress, and strain in a general orthogonal system.

This chapter may seem at first sight to consist mainly of fonnal results-of proofs that

must be established once, by one person, to legitimize the specific problem-solving methods

expounded in later chapters. However, the reader who wishes to develop the ability to solve

problems in theoretical or applied seismology on his or her own will soon fäce the question

of how a problem is "set up." That is, how does one translate the physical description of
a seismic source-and the general problem of calculating the ensuing motions at nearby

and/or distaot receivers-into a specif,c mathematical problem? In large part, the ability

to set up such problems will stem from mastery of the representation theorem, given in

various forms by equations (2.41) (2.43) and(3.1)-(3.3). We shall frequently refer to these

equations in later chapters.

2.1 Formulation

Two different methods are widely used to describe the motions and the mechanics of motion

in a continuum. These are the Lagrangian description, which emphasizes the study of a

particular particle that is specilied by its original position at some reference time, and the

Eulerian description, which emphasizes the study of whatever particle happens to occupy

a particular spatial location. For most applications in seismology, the linear theory of
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elasticity is conceptually simpler to devclop with the Lagmngian description, and this is the

framework we shall almost always adopt. Note that a seismogmm is the record of motion of
a particular part of the Earth (namely, the par.ticles to which the seismometer was attached

during installation), so it is directly a record of Lagrangian motion.

We shall work in this chapter with a Cartesian coordinate systern (,r,,,tt,,r.,), and all

tsnsors here are Cartesian tgnsors. We use the term displtttentent, regalded as a function

of space and time. and written as u : u(x, t), to dcnole the vector distance of a particle at

time 1 from the position x that it occupies at some reference time 10, often taken as / :0.
Since x does not change with time, it follows that thep.rrlicle velocity is öuföt and that the

pafiicle ecceleration rs ö2uf 3t2.

To analyze the distoftion of a medium, whether it be solid or fluid, elastic or inelastic,

we use the .rtlai,? tensor. lf a particle initially at position x is moved to position x + u, then

the relation u = u(x) is used to describe the displacement field. To examine the distortion

of the part of the rneclium that was initially in the vicinity of x, we nced to know the new

position of the pafiicle that was initially at x + dx. This new position is x * öx * u(x + ,x).
Any distortion is liable to change the relative position of the ends of the linc-element 6x.

If this change is öu, then äx + öu is the new vector line-element, and by writing down the

difference between its end points we obtain

,x + öu :x +dx + u(x + öx) - (x + u(x)).

Since löxl is arbitrarily small, we can expand u(x + dx) as u * (öx . V)u plus negligible

terms of order dxll. It fbllows that öu is related to gradients of u and to the original linc-
element 6x via

8u:(öx.V)u, Du,6u,- t 3r i. (2.t)

However, we do not need all of the nine independent components of the tensor ril to

specily true distoftion in the vicinity of x, since part of the motion is due merely to an

infinitesimal rigid-body rotation ofthe neighborhood ofx. This can be scen fiom the identity
(ui.j ui.)6xi:€ii*€1r,,u,,.7611 (see Box 2 2 and Problem 2.2)' so that equation (2.1 ) can

be rewrltten as

6u,: l@,,, + u j.)öx j+ l(curlu x Ex),, (.2.2)

and the rigid-body rotation is ofamount jcurl u. The interpretation ofthe last term in (2.2) as

a rigid-body rotation is valid if r,., | << L If di splacement gradicnts were not "infinitesimal"

in the sense of this incquality, then we should instead have to analyze the contribution to du

fiom afrile rotation-a much more difncult matter, since finite rotations do not conmute
and cannot be expressed as vectors.

In terms of the infinitesimal strain tensor. defined to have comDonents

13

e,,: )(u1.i i u 1.), (2.3 )
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the effect of true distortion on any line-element d.(i is to change the relative position of
its end points by e,,ös,. Rotation does not affect the length of the elemenr, and the new
length is

löx + 6ul - ",f;* 
.5" a 25u .5* (neglecting du . 3u)

dx,dx, * 2e,,ö,r,6r, (fi'om (2.2), and using (curl u x dx) . äx = 0)

: löxl ll i eijviv t) (to first order. if I c;; l<( lt,

where u is the unit vector öx/ löxl. lt follows rhat the extensional strain of a line-element
originally in the v direction is e,,v,,- r.

To analyze the internal tbrces acting mutually between adjacent particles within a
continuum, we use the concepts of /r4cl ion and, stress tensor. Traction is a vector, beins the

BOX2.2

We shall use boldläce syübols (e.g., u. r) tbr vector and tensor fields, and subscripts (e.g..
,ri, q/) to designatc vector and tensoa componenls in a Caflesian coordinale system. Uscful
references for the properties of Cartesian tensors arc Jeffrcys (1965) and Chapter 3 of
Jellreys and Jeffieys (1972).

R)r unit vectors (other lhan r). l. n. b). the circumflex is used (e.g_, i). Scalar products
are written as a . b. and vcctor products are written as a x b.

Overdots are used to indicate time derivatives (c.g., ü: i)u/Ar, ü = 02u/är2), ancl a
colnna between subscripts is used for spatial derivatives (e.g.. a ,., : 8u,/i:)x i).

The summation convention for repeated subscripts is followed throughoui (e.g., n,b, -
aPt + o$) + oh: a . b). and frequenl use is made of the Kronecker symbol 6,, and the
rlrernrting len\or with componenl\ r, '*:

ö:0 for i*j- and 6ir:l lbr i:j;
€r1, - 0 if any of i, i, k are equal,

otherwtse

al:t : 63 r: - r:tt : -€:r:t: -€32r = -€t1: = ]

The most important propertics ofthese synbols arc then

tu, : 3, ru ,, tijkejbk=@xb)ii

and they are linked by the properties

eilreitu,:3iir,, - 67,,dli and e;r167,,, -
6it 6i,
öit,t 6 j.
äi,, 6r,

The second-ordcr tensor t is syrnmetric ifand only if sijtrjr = 0.

6rr

dl,,
61,
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FIGURE 2.1
The definition of traction 'l' rcling at a
point acrcss the internal surlace S wilh
o||nil n. Th. . ho cc nJ .i!n i. .L''h thrl

traction is a pulling force. Pushing is in the

opposite direction. so fbr a lluid rredium,
the pressure would be n T.

lbrce acting pel unit area across an internal surf'acc within the continuum, and quantifies

the contact force (per Ltnit area) with which padiclcs on one side of the suface act upon

pa icles on the other side. For a given point of thc inlernal surface. traction is defined (see

Fig. 2.1) by considering the infinitesinral fbrcc äF acting across an infinitesimal area 65 of
the surt'ace. and taking the limit of ,F/(iS as d.S + 0. With a unit normal n to the surt'ace

.1. the convention is adopted that dF has the ciircction of lorce due to material on the side to

which n points and acting upon material on tlrc sidc fiom which n is pointing: the resulting

traction is denoted as T(n). If öF acts in the direction shown in Fig. 2. I, traction is a pulling
forcc, opposite to a pushing fbrce such as pressure. Thus, in a fluid. the (scalar) pressure is

n . T(n). For a solid. shearing forces can act across intcrnal surfaces, and so T need not be

parallcl to n. Furthernlore. the magnitude and directiQn of lraclion depend on the orientation

ofthe surfacc clenent öS across which contact tbrces are takcn (whereas plessure at a point

in a fluid is thc same in all directions). To appreciate this orientation-dependence oftraction
rt a p()int. c(rrsider a poil]t P, as shown in Figule 2.2, on thc cxterior surface of a house.

For an element of area on the surface of the u all at P, the traction T(n I ) is zero (neglecting

rtmosphcric prcssure ancl winds): bnt fbr a horizontal elemcnt ol area within the wall at P,

the traction 1'(n.) may be large (and negative).

The firrces acting upon particles in a solid or fluid nredium cortsist not only of the

contact fi)rces bctwccn adjacent particles. but also of (i) fi)rces bctween pafiicles that are

'l'(nr) + T(r.).
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FIGURE 2.3
A matcrial volune Y ol the
continuunl. with surfäce ,S.

not adjacent, and (ii) forces due to the application of physical processes extemal to the
medium itself. An exanple of type (i) would be the mutual gravitational forces acting
between pafticles of the Eafih. Type (ii) is illustrated by rhe forces on buried particles of
iron when a magnet is noved around outside the medium in which the iron is containcd.
To these noncontact forces, we give the name body'.fox:e.s. and use the notation f(x, 1)

to denote the body force acting per unit volume on the particle originally at position x
at some relerence timc. It will often be useful to consider the special case of a fbrce
applied impulsively to one particular particle at y: ( and time / : z. If this force is in
the direction of the ,r,,-axis, it follows rhat I (x, t) is proportional to thc three-dimensional
Dirac delta function ö(x (), specifying the spatial location; to the one-dimensional Dirac
delta function d(/ - z), specifying rhe riming of the impulse; and ro the Kronecker delta
function ö,,,, signifying the direcrional property that , :0 for i I L Thus the body-force
distibution in this case is eiven bv

.ti6,t) = A 6(x - 6) .t(/ r) ö;,, (2.4)

where A is a constant giving the strength ol the impulse. Note that the dimensions of l.
6(x f), and ö(t r) are, rcspectively, force per unit volume, I/unit volume. and l/unit
time. The Kronecker delta is dimensionless, so A does have the correct physical dimension
fbr an impulsc (fbrce x time).

We are now in a position to place a constraint on tlte accelerations. body fbrces, and
tractions acting throughout a volume y with surtäce S (see Fig. 2.3). By equating the rate
of change of momentum of pafticles constituting y to the forces acting on these particles.
we lind

t1

rl

a

I
1

T(n) dS. (2.s)

This relation is based on a Lagrangian description, and V and S move with the pa icles.
The lefrhand side can rhus be written as |ff, oQ2u/öti) ay, since the panicle mass p dV
is constant in time.

Our first use of (2.5) is to obtain an explicit form for the functional relationship s(

T: T(n) and to introduce the stuess tensor. Consider a particle p within the medium lbr dr

which the acceleration, the body force, and the tractions are all nonsingular. Surround this
particle by a small volune 

^ 
y. and consider the relative magnitude of the three terms in

* lll.,# d, : lll,f o, * ll,
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FIGURE 2.4
A small disc within a

stressed medium.

(2.5) as Ä V shrinks down onto P. The volume integrals will be of order A V, but the sul{ace

integral is oforder J[ dS taken over the surfäce of A y. In general such integrals are of order

(^y)r/3. tending to zero more slowly than AV. After dividing (2.5) through by JÄ dS, it
follows that

: O(Ayr/l) + 0 as ÄV --) 0. (2.6)

Now suppose that A V is a disc, with opposite faces having outward normals n and -n (see

Fig. 2.4) and the edge having insignificant area. Equation (2.6) then implies the result

T(-n) : -T(n). (2.1)

Next, take A y to be a small tetrahedron, with three of its faces in the coordinate planes (see

Fig.2.5) and the foufih having n as its outward normal. Equation (2.6) then implies

T(n)ABC + T(-i,)OaC * T( iu )OCA + T(-i:)OAB . n
ABC+OBC+OCA+OAB

as Ay + 0. Here, the synbols A-BC atc. denote areas oftriangles, and one can show geo-

met callythatthecomponentsofnaregivenby(r1,r2,a3) -(.OBC,OCA,OAB)/ABC.
Then (2.8) and (2.7) yield

T(n) : T(i-),?-, (2.e)

which is a specific and important relationship between traction T (n) and n in tetms of three

tractions acting across coordinate planes. The properties (2.7) and (2.9) are trivial for a static

medium, but we have shown them to be true even during accaleration.

The stress tensor is introduced bv deflninc the nine quantities

tr1- T1(lp),

so that rH is the /th component of the traction acting across the plane normal to the kth axis

due to material with greater 11 acting upon material with lesser,rp. Thus

(2. r't)

ITd S

Ti - t.i;n.i. (2.10)
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FIGURE 2.5
The small tetrahedron
OABC has three ofits faces

in the coordinate planes,

with outward nomals
i; (j : I, 2, 3), and the

foufih face has normal n.

Our second use of (2.5) is to obtain the equation of motion of a general particle.

Applying (2.10) and Gauss's divergence theorem to give

pü, : fi I r.11,i,

which is our first form for the equation of motion.

Another constraint upon the mechanics of motion is given by equating the rate ofchange

ofangular momentum about the origin ofcoordinates to the moment offorces acting on the

Darticles in Y. Thus

I l,r, o' - | I :1/1,ts 
: I I 1,,,,,, 

or.

we find for a general volume Y that

(2.1 1)

Ill,*u, ri t1;.) dv -0. (2.t2)

This integrand must be zero wherever it is continuous, otherwise a volume V could be found

that violates (2.12). hence

(2.13)

* lll,xx pidv: lll,*xrdv i ll,x"ras, (2.14)

where X: x + u. Since Ax/At, i x ü, and 0(p dV)/At arc all zero, the left-hand side

herc is l[[, X x pü dV . Using the strict interpretation of (2.13) developed in Box 2.3,



Box 2.3
Euler or Lagrtutge I

A closcr look at the application of Cruss s theorem in (2.11) sho$s that our LJgrdntiün
approach is inappropiatc fir| the spatial dillerentialions in (2-l l) (2.131. Tbe particlcs

constitllting .S at tirne I hd\,e. in gencral. moved from their position at thc referenuc litnc frr.

so thall

II,','", n': 
111,!','dv'

whereX = x + u, andthe spatialdiflerentiation that must be condLrctedon points throughout
y at line t is ä/äXr. For tinite rnotions, lhe exact equation for nDtion in the contlnullm ls
therelbrc. in our notation.

llu, ,. l, i,
P ,t :.Ii+ * (2.I3. strict torm)

The Eulerian approach instead cliscusses lield variables dirccdy as a funclion of X and r

(taking u to be the displacement of thc particle at X and tirne / fiom ils position r irt time

t0), and rri u'ouid bc a stress conlponent al (X.1). This otlirs the advantage of allowing
onc to work uith independent variablcs lhat are nallural fbr interpreting the right hand side

of the equation ol motion. but has the disadvantage olcumbersorne expressions fbr the ralc

of change of ploperties carricd by thc panicles. For exanlple. particlc vclocity v at (X. r)
is difficult to exprcss in terms of the displacement ficld u : u(X. t). The equation fbr v is
given by seeiig that the particlc at X at time t has nloved to X + JX at timc. + dt- so

v lr : u(X + ,tX. I + iil) - u(X. r).

Since v : limit ot JX/r1 fbr a fixed pa icle,

/ ",/, \ / ",,' \r | | +r.l I' \ ''r '/,,t..1 pn'iton \äY /nt.J,i,n.

is thc implicit equation to be solved fbr v in terms oI u (implicit. because componcnts of !
appear on both sidcs of the equation). Once the particle velocity is found. the acceleration
of dre particle at (X, t) is easily givcn by the malerial deüvative av/i]t + (v v)v, wherc
V is the Eulcrian spatial derivative. i.e.. in X coordinates.

ln seismology, the distincllon bctween Lagrangian and Euleian approaches farely needs

to be madc. since spatial lluctuations in the displacements. strains. accelerations. and

stresses have wavelengths much greater than the amplitude of particlc displacernenls- ln
this case. it makes no practical diflerence \r'hcthcr a spatial gradienl is evaluated at n fixcd
positiol (Euler) or fbr a particular particle (La$ange). In this book we emphasize the

Lagranglan approach because lhere is thcn a simple exact relationship between particle

velocity and particle displaccmcnt. v: iJu(x. r)/ilr. and becausc a scismometer measures

the motion ol the llxed parlicles to which iI $'as originally attached. Tn lluid mcchanics.

wherepa icle displaceincnls may not be snlall,lhele is little intcrcst in particle displacenent
as a ficld variable and the Eulerian approach is more uselul.

A linal äcknowledgrrcnt: the Bulerian" and 'Lagrangian approaches were bolb devel-

oped by Lconhard Euler.

2.1 Formu aUon 1 9
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it lbllo\.s that

llt ;t f ll
lll , X,^-r,,JV_lll ,,,rx,rpü^ [^tttl
JJJ| t^t JJJ\

- ll ).tax,lLtlS rlromr2.l4)l
JJS

- J J ,' , 
X,r11n, JS rlrom {2.1t)r)

Applying the divergence theorem ro this surface integral and using AXi /AX1 :611,
ot,talnS

t:1ipt 
1p 

dV -0 for any volume V,

implying sti rzik :0 everywhere, and ltence that the stress tensor is symrnetric:

(2. 15 )

With this fundamental result. we can finally state the formula for traction componenß

T;=tijnj (2.16)

and the equation of motion as

pä, - I,i t1i.1. Q.l7)

The spatial derivative here should be carried out with respect to Xl, but (as discussed
in Box 2.3) dit'tercntiation with respect to,t, is usually adequate in seismology, and will
hencefbrth be assumed.

2.2 Stress-Strain Relations and the Strain-Energy Function

A mediurn is said to be elasllc if it posscsses a natural state (in which strains and stl.esses

are zero) to which it will revert when applied forces are removed. Under the influence of
applied loads. stress and strain will change together, and the relation between them, called
the constitutive relation, is an important characteristic of the medium. That there is such a

relatlon we prove below by thermodynamic argunents. The relation itselfis a proper subject
tor experimental detemination, and Robert Hooke's measurements of "springy bodies" led
him, over 300 years ago, to the conclusion that stress is proportional to strain. His statements
on this matter were somewhat enigmatic. as today's concepts oftraction and tensor were then
unavailable. Augustin Cauchy, in the early nineteentlt century. was tlte first b develop many
ofour modcrn ideas of traction, and it is clear that he understood many results that today are
more easily communicatcd in terms of tensors, which did not conle into general use until
the twentieth century. The modern generalization of Hooke's law is that each component

1il,



2.2 Stress-Strain RetaUons and the Strain_Energy FuncUon

of thc stress tensor is a linear conbination of all componcnts of the strain tensor. i.c., that
there cxlst constants ciitl such that

c jirq : ci.ipq (due to rji : uil) (2.l9)

ciiqp - ( iip,1 ldttetLte,,n:e,,n)

21 

|
(2. l8)

A body thar obeys the consritutive relatkrn (2.rg) is said to be rinearrt ercrstic.'rhe
quartltres ( j ltl are components of a fourth-older tensor, and have the symmetries

and

It is also true from a thernlodynamic argument that c,,,,ri; : crjl,4. as we now shall show.
Suppose that an elastic body occupies the volume'y with surface .!. The llrst law of

thermodynamics states that the body possesses an intcrnal (or, intrinsic) energy. which may
change with deformations of the body, and the energy balance for work donc on the bodv

12.21 )

Let us analyze each of these tcrms separarery.
( 1) The rate of mechanical work is given by

rlf tllll f üdv+ ll r.n(ts
JJJI' JJs

f tt r: | | | | firii + ttitti,).11 dV (from (2.t6) and Gauss's divergence rneorcm)
JJJ\ L -'J

r r r t2.22)

- | | | tpü,ü, I ti,t't,.it Jv {trom r2.17l)JJJI'
A f f f I ttl-; lll aptilidv+ lll r',i,, dV tsvnrmerrvofr rnrJ tictinirion ofe,r).tu JJJ| z JJJr ,."

(2) Let h(x. /) be the heat flux. such thar h . n is the rate ar which heat is transmitted
(per unit alea) in the n direction across arca elements nornlal to n. Let e(x, t) be the heat
per unit volume duc to input through the boundary. so that the rate of heating is given by

* lll,Qdv:_ ll,n "as
Then clearly a: -V. h.

(3) The rate of increase of kinetic energy is given by

Rate of doing mechanical work + Rate of hcaring

: Rate of increase of (kinetic + intemal energies).

(2.10)

(2.23)

! lll,),,,,,,,, (2.24)
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(4)LetU betbe intemal energyperunitvolume.Thenfrom(2,21) (2.24) we conclude
that

c{ 
- -ri; i -T i,;(;i! or ü:ö+r..a., (2.25)

If U, Q, and 2,, are mcasured as small penurbations away from a state ofthermody_
namic equilibrium. then (2.25) is equivalent to

dU: clQ I t,, cle,,

:T dS + t,, tle,, (fbr reversiblc processes).

in which 3 is the entropy per unit volume and T is the absolute temperarure. Equation (2.26)
implies that entropy and strain components are the state variables in terms ofwhich intemal
energy is completely and uniquely specified. In panicular, intemal energy does not depend
on the time history of strain.

It is often useful to work with a function W of the strain components that allows the
stresses to be generated via

alv
,r,_.\.

A function with this property is called a stain-energt function.
Note from (2.26) the formal result

(2.28)

If the processes of detbrmation are adiabaric, so thar h:0 and ö :0, then the actual
changes in U associated with changes in strain do occur at constant eDlropy, ano we can
choose ^l,V: U and use (2.28). This is the situation in seismology, since the time constant
of thermal diffusion in rock ((distance)2/diffusivity) is very much longer than the period ol
seismic waves (wavelength/velocity).

It is also true that r,, : (0'l /|eiih, where g : U - TS is the.frce crerg) per unrr
volume (for which dg = 3 r/T + r,, r1e,,). For defbrmation processes that take place so
slowly as to be isothermal, as in some tectonic processes, it is then natural to form 4, from
changes in the free energy, and one would choose W:3.

For all deformations such that the strain.€nergy function exists, we may combine its
properties with Hooke's law and finq

(2.27)

(2.26)

(2.29)

(#),

dW

0ett 
'tt -tJl'l't'q'

/non' atw : 'ljw \
\ hc,,0e nq 6"r,qö",, I

which implies

(2.30)



2 2 Slress-Strain Relaiions and the Strain Energy Funcuon

Since all the tirst derivativcs olW are homogeneous (oforder one) in strain components,

and '!\l can be taken as zero in thc natural state, JV itself nrust bc homogeneous (of order

two) in the form

\l:d,,rre,,eur. (2.31)

This quadratic is the same as ] i,/, r,,,, + d,.,,i)"i1" 1,r.b\t differentiation of (2.31) to give r,,
shews that (.d 

i, ,,,, * d ,, i 1) 
: c, rr,,,. hence the strain energy function i s, expl icitly.

\l - jt,,71e,,e11: )rije it. (2.32)

Under adiabatic or isothemral conditions. the strain energy f'unction is positive except lbr
the natural state (where 1V = 0). so rhar 1t,,^7.,,e17 is r p,rsitirc dcttnite quadratic forln.
('iV 10. because we assume the natural state is stable.)

The t,r17 are independent of strain, which is why they are somctimes callecl "elastic

constants," although they are varying 1'unctions ofposition in the Earth. The elasticity theory

used in seismology is to a Iüge extcnt chamcterized by a preoccupation witll inl'tomogeneous

mcdia, particuiarly with a spherically symmetric medium that is cverywhere isotropic.

ln general, the symmetries (2.19). (2.20), and (2.30) rcduce thc number of independent

conponents in c,r17 liom 81 to 21 . There is considerable simplification in the case of an

isotropic medium. since c must be isotropic. lt can be shown (JefTreys and Jeffreys, 1972)

that thc most general isotropic fburth<rrdcr tensor, having the symrnetries ofc, has the form

.tj*t - L3;j3tt -l 1L(3ip6 11* d17dr1). (2.33)

23 

I

This involves only two independent constants, ), and ir, known as the Lam6 moduli.

Note that the results we have obtained in the present sectjon are sp(jcialized to the case

of small perturbations away liom a referencc stale in which strain and stress arc both zero. In

the Eafth s interior, self gravitation is responsible for pressures of up to around I megabar.

Even if onc postulates a state of zero stress and strain for Earth materials. it is clear that

the results of this section cannot directly bc applied in seismology, since strains due to sLrch

pressures arc not slrlall. Using such a ref'erencc state. one D-Iust work with a theory of ilnite

strain. in which the stress strain relation is nonlinear. Altemativel]'. one can choose the

static equilibrium conliguration of the Earth. prior to an earthquake. as a retcrcnce state.

This is the usual procedure in seismology. By clclinition. the refereoce state is one of zero

strain. but now thc initial stress is nonzero. ancl seismic notions are studicd in tenns of a
linear relationship belweer strains xld increnentdl stresscs. Thus the stre\\ i\ on at zero

strain. and iso0+ T at nonzero strain, where tii-(iiktekt.andcomponenr\o,f cln be of
the same order irs components.tltl (,' I rnegabar).

For the present, we shall continue to neglect the ctTccts of initial stress orl. This

simpliäcation isjustitied in Chaptcr 8. where initiiti stresses are co[ectly taken into account

and where a brief review is givcn of those aspects of the theory that need rcvision (Box Il.5).

To quantify the effects of self-glavitation. we shall jn Chtpter 8 adopt an Eulerian approach.

)
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2.3 Theorems of Uniqueness and Beciprocity

It is natural to introduce the discussion of uniqueness (fbr the displacernent lield u through-
out a body with volume V and surfäce S) with some general remarks conceming the ways
in which notion can be set up. Because the displacement is constrained to satisfy (2.l7)
throughout y, the application ofbody fbrces will generate a displacement field, as will the
application of tractions on the surface S. We shall show that specilication of the body forces
throughout V, and tractions over all of S, is enough to determine uniquely the displacement
field that will develop throughout y from given initial conditions. An altemative way to
specify the influence of S on the displacement field is to give a boundary condition (on S)
fbr the displacement itself, instead of for rhe tracrion. For example, S might be rigid. Ir night
seem at lirst that the traction on S and the displacement on .t are independent properties
of the displacement neld throughout V. This is not so, however. and it is impofiant fbr an
intuitive understanding of Sections 2.3 2.5 to appreciate that traction over S determines the
displacement over S, and vice versa.

2,3.1 U N IQUENESS THEOREM

The displacement u : u(x,,) throughout the volume y with surface S is uniquely deter
mined alier time t0 by the initial values ofdisplacement and pafticle velocity at 10 throughout
y; and by val ues at all times 1 > /0 of (i) the body fbrces f and the heat Q supplied rhroughout
y; (ii) the tractions T over any part Sr of S; and (iii) the displacement over the remainder
52 of S, with .tj + S, : S. (Either of St or.t, can be the whole of S.)

PROOF

Suppose u, and u, are any solutions for u that satisfy the same initial conditions and ar.e

set up by the same values fbr (i) (iii). Then, using lineariry, rhe difference U = ul u2 is
a displacement field having zero initial conditions, and is set up by zero body forces, zeto
heating, zero traction on Sj, and U : 0 on Sr. It remains to prove that U : 0 throughout y
for I > 10.

From (2.22), the rate of doing mechanical work in rhe displacemenr fleld U is clearly
zero throughout y and Sl and 52 for r 2 /0. The lasr equality in (2.22) can be integmred
lrom 10 to t, and, together with the zero initial conditions and the use of a strain-nergy
function (U involves adiabatic changes), it fbllows thar

Both the kinetic and strain energies are positive delinite, so that U, : Q f611 > /0. But Ui : 0
at t : /0, and hence U:0 throughout V for t >_ ta.

2,3.2 REC I PROC ITY THEOREMS

We shall sLate and prove several general relationships between a pair of solutions tbr the
displacement throughout an elastic body y.

I I L)ro,o, u, * I I L\c,,p1rJ,,,Lrr,, 
dv =0.
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sox2.4
Use oJ the tern "honogeneous" tts applied to equatiorts artd boutdar,- totditions

The equalion lbr elastic displacemeit is L(u) : f. $ here L is the vector dilicrcntial opcrator
detincd on thc conrponcnls ol u by

(L(u) ), = pü, (, ijrlr.i) i

Ifbody fbrccs arc abscnt. then the equation L(u) : 0 for tt is said tobe lk)tnog?t1(ous. A
hontogeneous bouttdt 'r. ..rrdii.rr on the surlice S is one tbr which arlrer thc displacemcnt
.rr thc traction vanishes at every point of the suface. If a solutioi to llle homogeneous

equalioi is multiplied by a constant. the result is still a solution (unlikc the outcome of
multiplying a solution to the inhonogeneous equation, L(u) : f wrth f 10. by a constan0.

This terminology is reniniscent of linear algcbra. fbr which a systcm of r equations

in n unknowns. in the form Ax:0. is also said to be honogeDeous. Here, x is a column
veclor alld A is some a r l] matrix. It is well known lhat nonlrivial solutions (x l0) can

cxist, but only if A has a special prcpefiy (namely. a zero deterrninait). The coresponding
resull in dy11anic elasticity is that nlotions can occur throughout a linitc clastic volumc V
without any body forces and with a honogeneous boundary condition over the suüace of
y. These are the.frec ostilkttkttt.t or nornul tttrles of thc body, which can occur only at

cenain frequencies. See Chapter 8.

Suppose that u : u(x, /) is one of these displacement fields, and that u is due b bocly

forces f and boundary conditions on S and initial conditions at time / = 0. Let v : v(x,1)
be anorher displacement field due to body folces g and to boundary conditions rnd initial
conditions (at I - 0) which in genelal are different fi'on] the conditions 1br u. To distinguish
thc tractions on surfaces normal to n in üese two cases. we shall use the notation T(u, n)
fbr thc traction duc to thc displacement u and, sitnilarly, T(v, n) for the traction due

to v.

The first reciprocal relation to notc bctween u and v is

T(u, n) v .lS

25 
1

(2.34)

T(v, n) u r1S.

This result is due to Betti. It can easily be proved by substitution from (2.17) and (2.16)

and thelr applying the divergence tbeorem to reduce the lefi sidc to .fffv c,,r,u,.,ur_, tlV.
Sin.ilarly, the riglrt hand side reduces to lft, c,,71u,.,u7.1dV, and (2.3,1) follows fron'r the

SYnlmetIY . ti t/ : .Ull.
Note that Betti's theorem does not involve initial conditions fbr u or v. Furthcrmore.

it remains ffue even if the quantities u.ü,T(u,n), and f are evaluated at timc 1l bul

v. v. T(v. n), and g are evaluated at a different time /r. Tf we choose Il : I and 12 : r t

IIL,, /)i\ v dv + ll,
: lll,r" t'i) 

'\t 'tv + ll,
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BOX 2.5
Porallels

A rearangemerlt of Betti's relarion (2.34) Sives

tll tl
lll I',"'.,,.,'., t!.t't..,tt,t rltlv = llr,.7,u.n) // r,r.n,t,/J.JJJI JJ\

This is a vector theorem for the second-order spatial deri\,.ltives occurring in thc wa\,e
equation of elasticity, which is analogous to Caeen,s thcorem

[[[ '+, e av'v),1v = [[ (r':' ,'a).,,JJJv lJ,\'a't "')"-
for scalals and the Laplacian operatoa GLeen's theorem is a working tool lor sLuayrlg
inl'tomogcneous equations, such as V14 : -4rrp, and we shall use Betti's theorem for the
elastic wave equation. in which the inhomogeneiry is the body-tbrce term.

Therc are nany f'urther analogies betwcen Didchlct problenrs (tbr potentials that arc
zero on "t) and elasticity problems with rigid boundaries; and between Neumann problems
(ä@/är : 0 on S) and t.action frce boundaries.

and integrate (2.34) over the temporal range 0 to z, then the acceleration terms rcduce to
terms that depend only on the initial and final values, since

tl
I o{ü(t) .,t(t r) - u(/) . y(z t)l dt

JO

|, a
-p | ^ lürrr.vrr i)+u{/r.,irr tllJtJn ot

: p {ü(r) .v(0) - ü(0) .v(r) + u(r) .n(0) u(0) . n(r)}.

If there is somc time r,, before which u and v are everywhere zero throughout V (and
hence ü :'i':0 for r : r0). then it follows that the convolution

I p{üG) v(r r) u(1) .i(r - t)l dl
J_

is zero. We deduce tiom Betti's theorem the important result, for displacement fields with
a qulescent past, that

r^: r | |
I l, ll/ lu,x.i'.gr\.r -ir vix.T /) Irx.rlrtl

J N JJJI

/"' f f {215)

- I Jr // {rtx.z r) T(u(x./).n) -u(x,r). T(v(x, r -r),n)}d.S.J-r J J 5
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2.4 Introducing Green's Function for Elastodynamics

A major aill of this chapter and the next is the development of a representation for the

displacements that typically occur in seismoJogy. The representation will be a fomula
for the displacement (at a general point in space and time) in tenns of the quantities that

originated the notion, and we have seen (in the uniqueness theorem) that these are body

lbrces and applied tractions or displacements over the surface of the elastic body under

discussion. For earthquake faulting, the seismic source is complicated in that it extends

over a finite fault plane (or a finite volume) and over a finite amount of time, and in general

involves motions (at the soufce) that have varying direction and magnitude. We shall flnd
that the representation theor€m is really nothing but a bookkeeping device by which the

displacement from realistic source models is synthesized from the displacement produced

by thc simplest of sources namely, the unidirectional unit impulse, which is localized
precisely in both space and time.

The displacement field from such a simple source is the elastodynamic Green function.

If the unit impulse is applied at 1: ( and I : r and in the,?-direction (see (2.4), taking

Ä = unit constant with dimensions of impulse), then we denote the ith component of
displacement at general (x, t) by Gi,(x, r; (, r). Clearly, this Green function is a tensor

(we shall work throughout with Caftesian tensors, and therefore do not distinguish between

tensors and dyadics). lt depends on both receiver and source coordinates, and satisfies the

eouation

27

dza
o i,.o,,,- J;,, örx - ( i 3(r ,, ni, ('''' *o') (2.36)

throughout V. We shall invariably use the initial conditions that G(x,/;(, t) and

A{G!,tt t, r)J /At are zero for / :: r and x 16. To specify G uniquely it remains to state

the boundary conditions on S, and we shall use a variety of different boundary conditions

in different applications.
lf the boundary conditions are independent of time (e.g., S always rigid), then the time

origin can be shifted at will, and we see from (2.36) that G depends on r and x only via the

combinationl-z.Hence

G(x, t; {, z) : G(x, t r;6,0) : G(x. z;(, 1). (2.31)

which is a reciprocal relation for source and receiver times.

If G satisfies homogeneous boundary conditions on S, then (2.35) can be used to

obtain an important reciprocal relation fbr source and receiver positions. One takes f to

be a unit impulse applied in the r?-direction n1 1= (t and time /: rl, and g to be a unit
impulse applied in the r directionatx:62andtimel:-rr.Thenai:C,,,(x,t:1yr)
and u; : G',,(x' r'(2' -12), so that (2.35) directly yields

G,,,,,(e 2, t +Utrrt):G,,,,,(trr t;t2,-t). (2.38)
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Choosing rt: t2-0, this becomes

G,,,,,G z. t : t r 0) : G,,,,$ y t : (2, 0).

which specifies a purely spatial reciprocity. Choosing r :0 in (2.38) gives

(2.39)

(2.40)

which specifies a space time reciprocity.
The actual computation ofan elastodynamic Green function can itselfbe a complicated

problem. We shall take up this subject in later chapte$. beginning in Chapter 4 with the
simplest of elastic solids (homogeneous, isotropic, inlinite) and moving on to the case of
large separation between source and receiver in inhomogeneous media.

2.5 RepresentationTheorems

If the integrated form of Betti's theorem, our equation (2.35), is used with a Green function
for one of the displacement flelds, then a lepresentation for the other disptacement fleld
becomes available.

Specifically. suppose we are interested in linding an expression for the displacement u
due both to body lbrces f throughout y and to boundary conditions on S. We substitute into
(2.35) the body force g,(x, r): ö,, ö(x () 6(), for which the conesponding solution is
Li(l.t) - G i,,k, t: C,0), and lind

G,-(.C2, h; ( ), r) : c,,,J.E:,-t':12. 12),

,ntc.Tt- l--l, Ill, [,rx.nG,,,rx r t:t.otlv

+ l* a, 
11rt",,,,.",2 - 1;(,o)zi(u(x,'),n)

- u,(x, t)c,,r,n,Gr,,.,(.x,t /;(,0)l dS.

Before giving a physical interpretation of this equation, it is helpful to interchange the
symbols x and ( and the symbols I and r. This permits (x, r) ro be the general position and
time at which a displacement is to be evaluated, regarded as an integral over volume and
surface elements at varying ( with a temporal convolution. The result is

ü,,(x. /) = l:_r' | | | , t1G,r'tG,,,r.(,t - r: x,0) dv({)

* ll*u' ll"to,,,c,, r;x,o)f (u((, r),n)
(2.4r)

r ,(.( , t ) c,, r,n ,G rn.,(6 , t - z; x,0)] dS(6).

This is our lilst representation theorem. It states a way in which the displacement u
at a certain point is made up fiom contributictns due to the force f throughout y, plus
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contributions due to the traction T(u, n) and to the displacement u itself on S. However.

the way in which each of these three contributions is weighted is unsatisätctory. since each

invoives a Grecn function with source at x and observation point at (. (Notc that the last

term in (2.,1t ) involves differentiation u'ith respcct 1(] (r.) We walrt x to be the obscrvation

point, so that thc total displacement obtained thcrc can be regarded as the sum (integral)

of contributing displücements at x due to erch volune element and surfäce elemcnt. The

reciprocal theorem for G must be invoked. but this will require extra conditions on Green's

function itselt', sincc the equation Gr,,((, / r:x,0) : G,r-(x.1 r; (,0) (see (2.39)) rvas

proved only if G satisfies honogeneous boundary conditions on S. whereas (2.4 | ) is valid

for rr,'ry Green tunction sct up by an inpulsive force in thc ,-direction at ( : x and r : r.

We shall examine two dil'lerent cases. Suppose, first. tllat Green's function is cletcr-

nined with S as a r igid bountiary. Wc write G'isi't for this tunction and Gl;i'' ((, / r : x, 0) -
0 tbr ( in S. Then (2.,11) becomes

,,,t",r'l: l" d, li((. r)Gili'"(x, r rtt,0) ttv
(2.12)

n.t1.r t, .,t,u , -, G'1,"'x.t ':(-u,] JS.
,,1/

2sl

/_

III,

', ll,

I

Altcrnatively, we can use Gr'"" as Green's function, so that the üaction

cijklt jQla<)Gri:'G.t r;x,0) iszerotbr( in 5' finding

,r,,,x.ii- I'_, IILr,'(.riGi.;'rx.i,.1.1,,dv
f| " 

(243)

+ I at ll cüi"tx.r r{.0)r,(ur(.rr.n)r1S.
J \ JJ\

Equations (2.11) (2.43) are all difl'ercnt foms ofthe representation theorem and each

has its special uses. Taken together. they secm to imply a contradiction to the question of
whether u(x. I) depends upon displacemcnt on S (see (2.:12)) or traction (see (2.,13)) or both

(see (2.,1I )). But since traction and displaccment cannot be speciäed independently on the

surface of an elastic mediuur, there is no contradiction. ln (2.,11), the Grecn function is not

completely .lefincd.

The surfice on which values of traction (or displacenent) are explicitly rcquiled has

been taken. in this chapter, as extenal to the volume y. It is often useful instcad to take

this surface to include two adjacent interna) sudaccs, being the opposite flces of a buried

fault. Specialized tbrnrs of thc representation theorem can then be developed. which enable

one to analyze the eafthquakcs set up by activity on a buricd fault. This subject is ccntral to

earthquake source theory, taken up in Chapter 3 and dcvcloped much further in Chapters l0
and I l.

So far, we have considerccl only Cafiesian coordinate systems. Iil practice, the scismol

ogist is often required to use non-Ca esian coordinates that allow the physical relationship

bctween components of displaccnlcnt. stress, and strain to bc simplilied for the geometry of
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a particular problem. We do this because it is of'ten fbund that a boundary condition nust bc
applied on a sud'ace on which a general curvilinear coordinate is constant. Many texts derive
fbrmulas in general orthogonal coordinates tbr vector operations such as grad, div, curl, anij
V2, but rather more is needecl to analyze the vector operations required in elasticity, as we
next discuss.

2.6 Strain-Displacement Relations and Displacement-stress Relations
in General Orthogonal Curvilinear Coordinates

Continuing with the notation developed in Box 2.6, we shall first obtain relations between
strain components zrv and displacement components ir'that generalize the usual Carte-
sian result pil : )(äu, /ö x , i Du i/'dx i). By eP./, we merely mean the components of the
Cartesian second-older tcnsor e, referrcd to rotated Cartesian axes, which are defined (at

the point of interest) to lie along the directions nl, n2, nl. Thus we emphasize the physical
components of strain. rather than the generul tensor components (which may not even have
the dimensions ofstrain). Ourproblem is to express e/'4 in terms ofderivatives (with respect
to cl, r'2, c3) ofthe physical components ofdisplacement also resolved along nl, n2. nl: the
difficulties that adse are due (a) to spatial chalges in the scaliDg functions /r1, /r2, ft]. and
(b) to spatial changes in the directions nl, n2, n3.

Direction cosines of the rotared Cartesian axis along nP are (.nti,nl,nti). refenerl
to the Cartesian axes i,,i,,*j (which are in the same fixed direction at every point).
Therefore, from the fundamental transfbrmation property of Cadesian vector and tensor
comDonents.

up - nlui (summation is retained 1br repeated subscdpts) (2.44)

I 3r d.l . I

- h,tlt ar, drtt
I

2hPhq

(#.*)
l0t, du, ilr, dr,\
\4.".t,t - ar, d,, )

I f r 1rr, ,1r, 1 iJ / | ä'l, \l
| - ll

2h t lö,"t \ ltt A.r I J, ' \lt|' :t.t / )
llr(/1 rrl ,a/la',\l

Lht LA, t' \ lrt lc,r | :tct \l( öt..t ,l )

(fiom (3) in Box 2.6; no summation over superscripts)

(revcrsing the chain rule in the previons line)

(from (3) in Box 2.6, and (2.,1,1))_L!,,' , I htrt 1,, f | ;t ,,r I i' ;,1
2ht A,! 2ht lr.t )-' lnt a,.r' ' ' ttt.|co" )
1 dut, 1 i)uq I I I An/, I an,/l

I

2ltq öc,t 2lt1' dcl' 2 ll]lt jc.t hp d. p l



BOX 2.6
Ceneral propcrties o.f orthogolt.1l cL!ri ilirrcttr coordittates

Consider a point al the ,"ector posilion x to bc specihed by thrce paralneters. ,:1. cl' r*1. That

is. cach of the thrcc components ol x (in sorne Cartesian coordinate system) is a scalar

funclion ol the c/':

f, : ri(' L' 

':' ul) (t - l 
' 
2 3)'

Wc suppose thal these fu[ctions t, have continuous derivalives and lhat there lre in\erse

functions

r /' : c/'(r L. r:' r r) (P:1.2.1) or c/':./'(x).

so thal the equation a/' = constant can be thoLrght of as a coordinatc surface fbr cach P,

and these thrcc surfaces interscct in pdiß on lines along which only one ol the cl. r'1. r'l is
varying. We use superscripts for quantities identified with the general curviliiear system-

Let n/'bc the unit Dornal to the coordinate surface tJ' = collslant, and suppose x and

x +./x both lie in this qurface. Then cJ'(x) :. /'(x + /x), and hence r1x Vc/':0'usingthe
Taylor expansion of c r'(x + r.1x). Since .1x is dr) Iine elemcnt wilhin the surflce. it follows

that V./' is normal lo r-r' : constant. and V. /' must be parallel to n/'.

Le,rhercngrhorvecr".o."o.,r";,:;;::-,:""*,t*' 
.)

(We dlop thc sumnaltion conventiol1 lbr supcrscripls. bul rctain il 1br subscripts' these bcing

relatcd to the oiginal Cartesiar systcm.)
we shell rssune that cl. cl. cl form a riglr hantletl otthogonal s\''t/?rr' i.e . lhat

nr . tt : }rq (the Kronecker delra), (2)

and that nr: nl r nl.
Using rl' fbr the r th CaLtesian component ofn/' , we can now oblaiü an importanl relation

between n/' anci ,x/a( /', as followsl

n,.= ,r/ x ,, 
',r_ 

t ,l 'lr. 1'' Lrhc clrrrn ruler
' ^r ? '4, 3,.

f ,, "la't {rrolul,r =)- 
d ux 

rtrornr)r,
It. o,,t L tt t d\l

and hence 
" 

nr,: l ijx 

" 

,-,,

A s[rall changc u 1x in position is associated rvith a srnall change in each ol c(nrdinetcs

r'1. cl. rl by rlx : lr, (iJx/i)cr')1.r'. and the rnlgnitudc of lhis changc is given by

(,/r)r : ,/t ,/x : )- A7.r' )- !a,'.u
4 A(r 4 dc4

- ftt ,t,)11 + tf ,trtl' + ti,t rt,,tlt (fiom (3) and (2)). (1)

(continued)

3l2.6 Strain-D sp acement Relaiions and Displacemeni Slress Re alions
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BOX 2.6 (continued)

This result leads to one of the quickest ways of actually linding the scaling functions:
the Euclidean disrance associated with incrcment dcl along nl is rll.l;and similarly fbr
h2 and, h3.

tn Section 2.6, wc need formulas tbr derivatives of the type änP /A(4 rn terms of the
undillerentiated nonnals. From (2) and (3), the equations to be satisfied are

1e. 1{ 1r1o.4{:6 (lll dillerenr scalar equarions)
ött dc, 

(5)
I,jt'n', I,O"n','.{nonlrr\räl\ecrorequalion:r.A('t 3r:r'

The above are 27 dillirent scalar equations for the 27 scalar unknowns in anr/äco, and
hence are exactly enough to determine the solution. In vector iom, this solution is

,Jnn n, Ah' -_, I nlJ/tr n'lhr n',hrl | (6)
a, .t ltt .1,' l ht a, h2 3,.) ht a.t l'

as may be verified by direct substitution back into (5).

In this form, we can use the final equation of Box 2.6 to obtain

"o, - 
t^l'." ! (i' \ | !1 .n (,' )'l * r"' 1,',Ü:. u' ahi *Lch:l . t2.4sl2Lht 3.1 \hrl ht 0r'" \tf l) h" lht llt h) itc2 h\ A,., I - -

in which all reference to the Cartesian system (rt,,r2, jr3) has at last been eliminated. Only
the first square bracket is required for the otf-diagonal componenrs (p I 4), but for a typical
diagonal component (2.,15) reduces to, e.g.,

,, lärl u) Aht u'|hl
ht hct hth) dc: h3h A,:,

To obtain the displacement stress relations for general orthogonal components of u
and z, we follow steps similar to the derivation of pti : 2,r., given in Section 2.I for fixed
Ca(esian directions. The principal difllculty lies in interpreting J[ T dS, the integral of
tractlon acting across the surface S with volume V. With y as the outward normal on dS,

T;(v) clS = t,,v., dS

- \-.P'l,,P,'{,, ./cL . ..,,, 
1, ,-- (transformation to components in rotated Cartesians)

P. tl

:LrP,tnlv,t.tS.
P.q

where lJe is the component of the normal to dS, resolved along n4.

t2.16)
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.r.

,, ,,'

(a)

FIGURE 2.6
ifl" p-pot"" of 1.! onto the surtacc rtr/ = consriint l'hc resuhing äreaon thc coordilale surlilcc is

lu li.-i"i Shor* ft*e is (/.S as pm ofthe surfacc of y (b) The projection of(1'S in brokcn outllnc-

onlo thc coordinatc sudacc c'l = conslant

Nowr,.//sistheprojectiontlfrlsontothesurläcccq=constant(seeFig.2'6).sothat
,t ,15: llF dt'l ricl: similar'ly 1br ul r/S and ur r/S lt lollows that

[[ ,,,ts -l [[ 1,''',','t,tt,\,/,',/, ] , 't':"!,'h't't 
J'' 't'lJJs TJJ\

But the physical volumc elcment dv is hthzlrl 'lc\ 
tl .2 tl .l' so fron steps parallcl to the

derivation of the cquttion of motion given in Section 2 l ' wc llnd here that

,#:, .nh7#('-"''+)

+ tt,t !, ht l; d(J d(21

-L t tt f ."'.,,,'',,i 
r,'i''' , ;)'''""i h'l''t

TJJJ\ l't(

+4rrut,,f r,'i,ti] ttct d c7 d i.

(2.17)
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Again, the derivativs ]1t) /lc'r is needed (sce (6) in Box 2.6), and by resolving (2.47) along
direction nl we lind

ö2ttl ,.r I
' lt: | 

1rt1]7r1 lfi o " nt r,\ + J 
^ {,12 n1 n')+ * (rrli, 1/,,)]

(2.48)

Similar results for p ü2 auJ pü3 can be found from a permutation of superscripts in (2.48).
Thc stress strain relation. rr, : t,r*re*,, becomes

tii = )'ö1.1e pp * 2Pe 
',

r l) :tht t ähl r)2 ölt2 ri cllt

Itth: d,: t"tlr,, tttt; Ji h tt oc

t t.r - ),|Pq I e, 
, + 2per',r ,

(2.19)

in isotropic media. We have used (2.33) here: ), and g. are (in general) functions ofposition.
ancl e** : e,1* e12! ei3 is the volumetric strain. Equation (2.49) is cxpressed in terms
of components in the fixed-direction Cartesian system, but the corresponding result fbr
physical components in the general o hogonal system has the same form. It is

(2.50)

since isotropy of the medium implies ct'q'' : c uu,,. and we can again use (2.33). The only
difterence in the fbrm of (2.49) and (2.50) is due to our using a summation convention tbr
subscripts but not tbr superscripts.

Applications of (2.46), (2.,113), and (2.50) are common in sphcrical polars (r, d, @), tbr
which the scal ing functions /r l, /'t2, l3 become, respectively, I , r, r sin d; and, in cylindrical
polars, (r, d, z) with scaling functions l, r, L In Chapter,+ we shall use orthogonal curvi-
linear coordinates associated with the wavefronts and rays that emanate trom a point source
in an inhomogcneous isotropic medium. Our convention of superscripts is convenient fbr
the derivation of (2.,15) (2.50). but in applications rhe superscripts are usually replaced
by subscripts that directly indicate the coordinate of interest. Thus, if (cl, t2. c3) are the
spherical polars (r, d, @), one ref'ers to et2 as e,1, to ll as ar, and to n2 as ä.

Suggestions for Further Reading

Achenbach, J. D. Wave Proptgation in Elastic Solids. Amstcrdam: North Holland, 1973.

Fung.YC. Fowtdatiorts o.f Solid Mechtnics. F,nglewood Cliff's, New Jersey: Prcntice-Hall,
1965.

Jeffreys. H. Cartesitut Tensor.r. Cambridge University Press, 1965.

Loye, A. E. H. A Treatise on the M.ühenntical Tlteory of Elasrici1-. New York: Dover
Publications. 194.1.

Malvern. L. E. hltro.luction to the Medtanics oJ ct Continuous Mediunr. Englewood Cliffs,
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35

Problems

2.1 Show thlt thc displacentent equation fbr infinitesintrl motion in an clastic aniso_
ll'opic ntcdiunt is

pui= fi t l(iiatt!kt).i.

If the nredium is honro-seneous ard isouopic. slro$,tltat this displacenrent equatron
bcconres

piit: l + e, + Lt)u t..ii+ llui.jj.

The above two equations arl] thc ith Cartesian contponent of a vector equ4llon.
Show that this vector equa(ioit. lix thc horrogcncous isottl)pic nlediunr. is

pü :f + (i. *2/)V(V. u) _ t1V x (V x u).

2.2 Flom the exprcssion lbr a,r*r:r,,,,, in Box 2.2. sho$,that

€ ii*t:it,, - ö 
1137,, - 3iu,ö11 and €,1*€ itu, 

: 3;u,ört - 6116p,,.

2.-3 F-or an isotropic clastic solid in which tlre shrss strain relation is rii : ir,**ö,, *
2pc,r. sho* that thc strair-stress relation is

2ue :- " 7,,Ä +'
.\,. +:tt-,, ,1 ,.

2..:[ What happens to the strcss in a body if tcmpcraturc is raiscd at fixed stt.ain? Does
the stress obey Hooke's law ( 2. l8 ) or Inust this be rnodifiecj in some way? (Recall
that seisnrological applicarions ol (:.lg) ale usually lirr adiabatic loading.)

2.5 We have shown horv lltc clisplaccmcnt field u(x. / ) tbr an elastic body is given
uniquely (e.-e.. by appliecl body lirrces itnd tractions). Show that body torces and
tlactions are given uniqucly oncc u(x. /) is known everywhere. (A proof ,.by

constluctiol]" is r.ery quick itnd sinlplc.)

2.6 Do the rclarions (2.21)-(2.25) change if stress depends on strair mre (e.g.. lbra
\ rscous tncdium)?

2.7 C)btain the traction due to displacelnent lield u actinc on arca clcnlcnrs normal k)
n. in the fbrnr

'f (u. nt:;.(V. uln + lr xtvxu))/.;ru
I j- + n

ilU

i)'l: 
(n v)u

Hcle
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2.8 The traction T in the pr evious question is a fuoction of position x, in the sense that
T: T(u(x). n).

a) Modity our derivation of (2.7) to shew that traction is a continuous lunction of
position, in the sense that

T(x + äx) T(x) + 0 as öx + 0,

provided öx is taken parallel to the direction n that defines the oricntation of
area elements on which traction is evaluated.

b) Consider a book resting on a flat table. Is it true that traction is u continuoLLs

function of position on the sud'ace of the table?

c) Check that youl answers to a) and b) arc not in conllict.

d) Show that rt..r:\,t2: are continuous tunctions of z in any nedium, but that
r-, need not be continuous in the r or t,-direct ons and that .,., 2,,.. and r,,.
need not be continuous in the z direction.

2.9 For a point at pressure P in a fluid, the stress tensor is isotropic and has components
t" = P6',. To enphasize the diflerences between stresses that are possible in a
solid and those thal are present in a fluid, it is convenient to define deviatoric
stresses ri, by z;j : Irr,rö,/ * r,1, and tleviaroric.ilrzirs by e,,: \c14ä,., I e',,.

Show then that the strain energy tl in an isotropic elastic medium is given by

u: j t(r, + I üe;ie tp + 2pa',,e',,1.

Show that eir is the change in volume per unit volume (i.e.. the volumetric strain).
Hcnce U can be regarded as a sum of dilatational encrgy, !0 + lpe,,err, and
shear strain energy 1te',,e',,. Why must /, 1 ]p (often callccl the bulk ntodulus,
denotcd by r) and p be positive? Is it natural to call K the cotnprerslöiiitl.or the
i r t c o n p r e s s i b i I i t 

-,- 
?

2.10 Consider two points, x and (, in an elastic medium, and let the unit vectors n
and u specify particular directions at x and (, respectively. Show lirst that a unit
impulse in the u direction at ( leads to a displacement at x whose component jn

the n dircction is given by niGit,(x,ti4,0)rr. Then show that tlis displacement
compoDent equals the displacement component in the u direction at ( caused by a
unit impulse in the n direction at x. (This rcsult generalizes the reciprocity result
given in (2.39). which was for an impulse taken along one of the coordinate axes

and a displaccment component also along a coordinate axis. The reciprociry i\ true
for arbitrary clirections n and u.)

(

I
I


